EPIDERMAL GROWTH FACTOR RECEPTOR, HUMAN TELOMERASE SUBUNIT - HTERT, PROTEIN KINASE D1 AND P16INK4A IN NORMAL KERATINOCYTES AND PREMALIGNANT LESIONS OF SKIN AND ORAL CAVITY.
Keywords:
PKD1, Protein Kinase D1, hTert, EGFR, p16INK4a, mutations, MMPs, Metalloproteinases, PMDs, Potentially Malignant Disorders, Leukoplakia, Erythroplakia, Actinic keratose (AK), Keratoacanthoma (KA), SCC, Spinocellular carcinoma, BCC, Basocellular carcinoma;Abstract
Abstract. Identification of mutations as markers for early malignant transformation could be more appropriate not only for early diagnosis of cancer but could potentially influence treatment strategies in HNC, since mutations in EGFR and Ras genes are closely associated with resistance to cancer treatment. Mutations in Ras, p53 (early), the gene of EGFR (in BCCs not detected), and HTERT promoter could be used as markers of cancer transformation. Mutations in p53 are detected early in PMDs, associated with high risk for early transformation into Oral SCC. Mutations in Ras are not detected in Potentially Malignant Disorders (PMDs), with exception of Actinic keratoses (AK), Keratoacanthomas (KA) and papillomas. Since increased expression of hTERT is an early event in the pathogenesis of hyperproliferative skin deseases, overexpressed hTERT is considered as a proproliferative (proinflammatory) marker, rather than cancer marker, in contrary to its mutations. Mutations in HTERT are detected in both Spinocellular carcinoma (SCC) and Basocellular carcinoma (BCC), UVsignature.
Increased expression mainly of MMP-9 and MT1-MMP (MMP-2), are now considered as markers for aggressive cancer phenotype in both cancers. Using EMT markers (vimentin, fibronectin, N-cadherin, vs, Ecadherin; and transcriptional factors - Snail, Slug, Twist; HIF-1α, α-SMA), we could not differentiate late PMDs of early cancer lesions. These markers are useful for detection of aggressive alteration in tumour pathogenesis, which is of importance when a surgical procedure is planned. COX-2 stain was highest in SCCs and aggressive BCCs. Increased expression of PKD1 was detected in BCCs in contrary to SCC. There is no currently data for the expression of PKD1 in PMDs, leading to SCC, nor for detected mutations in PKD1 gene in SCC and BCCs. PKD1 is upregulated and down-regulated in BCC and SCC, respectively. We speculate here that the molecular mechanism - increased NFκB-hTert-PKD1-NFκB-hTert, resulting in p16INK4a mutations and turn of PKD1 function, is connected with the progression of chronic inflammation in cancer development.
References
Villa A, Villa C, Abati S. Oral cancer and oral erythroplakia: an update and implication for clinicians.
Aust Dent J. 2011;56(3):253-6.
Campo-Trapero J, Cano-Sánchez J, PalaciosSánchez B, Sánchez-Gutierrez JJ, González-Moles MA, Bascones-Martínez A. Update on Molecular Pathology in Oral Cancer and Precancer. Anticancer Res. 2008;28(2B):1197-205.
Jin G. Using biomarkers to detect oral cancer holds potential for saving lives when the cancer is most curable. Biomark Med. 2010;4(6):835-8.
Sawhney M, Rohatgi N, Kaur J, Shishodia S, Sethi G, Gupta SD, Deo SV, Shukla NK, Aggarwal BB, Ralhan R. Expression of NF-kB parallels COX-2 expression in oral precancer and cancer: Association with smokeless tobacco. Int J Cancer.
;120(12):2545-56.
Goodin S, Shiff SJ. NSAIDs for the Chemoprevention of Oral Cancer: Promise or Pessimism? Clin Cancer Res. 2004;10(5):1561-4.
Karahan N, Baspinar S, Bozkurt KK, Caloglu E, Ciris IM, Kapucuoglu N. Increased expression of COX-2 in recurrent basal cell carcinoma of the skin: a pilot study. Indian J Pathol Microbiol. 2011; 54(3):526-31.
Kerkelä E, Saarialho-Kere U. Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol. 2003;12(2):109-25.
Yavrouian EJ, Sinha UK. Recent Advances in Biomarkers and Potential Targeted Therapies in Head and Neck Squamous Cell Carcinoma. ISRN Surg. 2012;2012:Article ID 715743.
Smith A, Teknos TN, Pan Q. Epithelial to Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Oral Oncol. 2013;49(4):287-92.
Debski T, Lembas L, Jethon J. Basal Cell Carcinoma. Curent Concepts in Plastic Surgery. InTech 2012.
Ivanova PV, Maneva AI. Comparison analysis of Basocellular carcinom and Spinocellular carcinom Protein Kinase D1, Wnt/β-catenin and Epithelial to Mesenchimal Transition (markers). IJCRR. 2018;9(2):20193-20251.
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers. 2017;9(52):1-45.
Jost M, Kari C, Rodeck U. The EGF receptor - an essential regulator of multiple epidermal functions. Eur J Dermatol. 2000;10(7):505-10.
Spallone G, Botti E and Costanzo A. Targeted
Therapy in Nomelanoma Skin Cancers. Cancers (Basel). 2011;3(2):2255–2273.
Eiseler T, Köhler C, Nimmagadda SC, Jamali A, Funk N, Joodi G, Storz P, Seufferlein T. Protein kinase D1 mediates anchorage-dependent and independent growth of tumor cells via the zinc finger transcription factor Snail1. J Biol Chem. 2012;287(39):32367-80.
Ono M, Kuwano M. Molecular Mechanisms of Epidermal Growth Factor Receptors (EGFR) Activation and response to Gefitinib and other EGFR-
Targeting Drugs. Clin Cancer Res. 2006;12(24):724251.
Kumagai K, Horikawa T, Gotoh A, Yamane S, Yamada H, Kobayashi H, Hamada Y, Suzuki S, Suzuki R. Up-regulation of EGF receptor and its ligands, AREG, EREG, and HB-EGF in oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(6):748-54.
Orlando B, Bragazzi N, Nicolini C. Bioinformatics and systems biology analysis of genes network involved in OLP (Oral Lichen Planus) pathogenesis. Arch Oral Biol. 2013;58(6):664-73.
Zhao M, Fu XL, Lv H. The expression of EGFR in oral lichen planus, squamous cell papilloma and squamous cell carcinoma. Shanghai Kou Qiang Yi Xue. 2012;21(6):673-6.
Ribeiro DC, Gleber-Netto FO, Sousa SF, Bernardes VD, Guimarães-Abreu MH, Aguiar MC. Immunohistochemical expression of EGFR in oral leukoplakia: association with clinicopathological features and cellular proliferation. Med Oral Patol Oral Cir Bucal. 2012;17(5):e739–e744.
Yamada T. Relationship of oral leukoplakia and cancer by immunohistochemical expression of
EGF-receptor. Kokubyo Gakkai Zasshi.
;57(1):187-200.
Bagan JV, Mata-Roig M, Cortio-Gimeno J, Murillo-Cortes J, Hens-Aumente E, Poveda-Roda R. Bagan L. Epidermal growth factor receptor copy number in potentially malignant oral disorders and oral squamous cell carcinoma: a short communication and preliminary study. J Oral Pathol Med. 2012;
(9):662-6.
Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS. Epidermal Growth Factor Receptor (EGFR) and EGFR mutations, function ans possible role in clinical trials. Annals of Oncology. 1997;8 (12):1197-1206.
Uribe P, Gonzalez S. Epidermal growth factor receptor (EGFR) and squamous cell carcinoma of the skin: molecular bases for EGFR-targeted therapy. Pathol Res Pract. 2011;207(6):337-42.
Griewank KG, Murali R, Schilling B, Schimming T, Möller I, Moll I, Schwamborn M, Sucker A, Zimmer L, Schadendorf D, Hillen U. TERT promoter mutations are frequent in cutaneous Basal Cell Carcinoma and Squamous Cell Carcinama. PLoS One. 2013;8(11):e80354.
Doma E, Rupp C, Baccarini M. EGFR-RasRaf Signaling in Epidermal Stem Cells: Roles in Hair Follicle Development, Regeneration, Tissue Remodeling and Epidermal Cancers. Int J Mol Sci. 2013;14(10):19361-84.
Spencer JM, Kahn SM, Jiang W, DeLeo VA, Weinstein I. Activated ras genes occur in human actinic keratoses, premalignant precursors to squamous cell carcinomas. Arch Dermatol. 1995;131(7):796-800.
Multhoff G, Radons J. Radiation, inflammation, and immune responses in cancer. Front Oncol. 2012;2:58.
Borges S, Döppler H, Perez EA, Andorfer CA, Sun Z, Anastasiadis PZ, Thompson E, Geiger XJ, Storz P. Pharmacologic reversion of epigenetic silencing of the PRKD1 promoter blocks breast tumor cell invasion and metastasis. Breast Cancer Res. 2013;15(2):R66.
Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H. Acquired Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second
Mutation in the EGFR Kinase Domain. PLoS Med. 2005;2(3):e73.
Kodaz H, Kostek O, Hacioglu MB, Erdogan B, Kodaz CE, Haclibekirogli I, Turkmen E, Uzunoglu S, Cicin I. Frequency of Ras Mutations (KRAS, NRAS, HRAS) in human solid cancer. EJMO. 2017;1(1):1-7.
Naganuma S, Whelan KA, Natsuizaka M, Kagawa S, Kinugasa H, Chang S, Subramanian H, Rhoades B, Ohashi, S, Itoh H, Herlyn M, Diehl JA, Gimotty PA, Klein-Szanto AJ, Nakagawa H. Notch receptor inhibition reveals the importance of cyclin D1 and Wnt signaling in invasive esophageal squamous cell carcinoma. Am J Cancer Res. 2012;2(4):459-75.
Abrahao AC, Bonelli BV, Nunes FD, Dias EP, Cabral MG. Immunohistochemical expression of p53, p16 and hTERT in oral squamous cell carcinoma and potentially malignant disorders. Braz Oral Res. 2011;25(1):34-41.
Kuo CL, Lai KC, Ma YS, Weng SW, Lin JP, Chung JG. Gallic acid inhibits migration and invasion of SCC-4 human oral cancer cells through actions of NF-κB, Ras and matrix metalloproteinase-2 and -9. Oncol Rep. 2014;32(1):355-61.
Park HR, Min SK, Cho HD, Kim KH, Shin HS, Park YE. Expression profiles of p63, p53, survivin, and hTERT in skin tumors. J Cutan Pathol.
;31(8):544-9.
Stelkovics E, Kiszner G, Meggyeshazi N,
Korom I, Varga E, Nemeth I, Molnar J, Marczinovits I, Krenacs T. Selective in situ protein expression profiles correlate with distinct phenotypes of basal cell carcinoma and squamous cell carcinoma of the skin. Histol Histopathol. 2013;28(7):941-54.
Shigeishi H, Sugiyama M, Tahara H, Ono S, Kumar BU, Okura M, Kogo M, Shinohara M, Shindoh M, Shintani S, Hamakawa H, Takata T, Kamata N. Increased telomerase activity and hTERT expression in human salivary gland carcinomas. Oncol Lett. 2011;2(5):845-850.
Freinkel RK, Woodley DT. The Biology of the skin. CRC Press, 2001.
Bolognia JL, Jorizzo JL, Schaffer JV. Dermatology. V.1, 3-th edition. Elsevier Health Sciences, 2012.
Neill GW, Harrison WJ, Ikram MS, Williams TD, Bianchi LS, Nadendla SK, Green JL, Ghali L, Frischauf AM, O'Toole EA, Aberger F, Philpott MP. GLI1 repression of ERK activity correlates with colony formation and impaired migration in human epidermal keratinocytes. Carcinogenesis. 2008;29(4):738-46.
Hafner C, Landthaler M, Vogt T. Activation of the PI3K/AKT signalling pathway in non-melanoma skin cancer is not mediated by oncogenic PIK3CA and AKT1 hotspot mutations. Exp Dermatol.
;19(8):e222-7.
Antal CE, Hudson AM, Kang E, Zanca C,
Wirth C, Stephenson NL, Trotter EW, Gallegos LL, Miller CJ, Furnari FB, Hunter T, Brognard J, Newton AC. Cancer-Associated Protein Kinase C Mutations Reveal Kinase’s Role as Tumor Suppressor. Cell. 2015;160(3):489-502.
Bharadwaj U, Eckols TK, Xu X, Kasembeli MM, Chen Y, Adachi M, Song Y, Mo Q, Lai SY, Tweardy DJ. Small-molecule inhibition of STAT3 in radioresistant head and neck squamous cell carcinoma. Oncotarget. 2016;7(18):26307-30.
Ivanova PV, Maneva AI. Protein Kinase D1, Ras, p16 and c-Myc in skin pathology, stromal activity. Src, PKCε, IL-6/ STAT3/ c-Myc , IL-6 and IL-8 - metastatic potential. Protein Kinase C expression profile in Basocellular carcinoma. Arch Derm Res. 2019;submitted.
Tsao AS, Kim ES, Hong WK. Chemoprevention of Cancer. CA Cancer J Clin. 2004;54(3):150-80.
Cukusić A, Skrobot VN, Sopta M, Rubelj I. Telomerase regulation at the crossroads of cell fate. Cytogenet Genome Res. 2008;122(3-4):263-72.
Dickson MA, Hahn WC, Ino Y, Ronfard V,
Wu JY, Weinberg RA, Louis DN, Li FP, Rheinwald JG. Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol. 2000;20(4):1436-47.
Shimamoto H. Telomerase activity in oral squamous cell carcinoma and leukoplakia. Kokubyo Gakkai Zasshi. 2001;68(1):125-33.
Crowe DL, Nguyen DC, Ohannessian A. Mechanism of telomerase repression during terminal differentiation of normal epithelial cells and squamous carcinoma lines. Int J Oncol. 2005;27(3):847-54.
Bu D, Johansson ME, Ren J, Xu D, Johnson FB, Edfeldt K, Yan Z. NF-κB-mediated transactivation of telomerase prevents intimal smooth muscle cell from replicative senescence during vascular repair. Arterioscler Thromb Vasc Biol. 2010;30(12): 2604–2610.
Sheng WY, Chen YR, Wang TCV. A major role of PKC θ and NFκB in the regulation of hTERT in human T lymphocytes. FEBS Lett.
;580(30):6819–6824.
Sinha-Datta U, Horikawa I, Michishita E, Datta A, Sigler-Nicot JC, Brown M, Kazanji M, Barrett JC, Nicot C. Transcriptional activation of hTERT through the NF-kB pathway in HTLV-I–transformed cells. Blood. 2004;104(8):2523-31.
Aravindan N, Aravindan S, Herman TS, Natarajan M. EGFR Tyrosine Kinase Inhibitor Pelitinib Regulates Radiation-Induced p65-Dependent Telomerase Activation in Squamous Cell Carcinoma. Radiat Res. 2013;179(3):304-12.
Pestana A, Vinagre J, Sobrinho-Simхes M and
Soares P. TERT biology and function in cancer: beyond immortalisation. J Mol Endocrinol. 2017;58: R129–R146.
Lewis KA and Tollefsbol TO. Regulation of the Telomerase Reverse Transcriptase Subunit through Epigenetic Mechanisms. Front. Genet. 2016;7:83. doi: 10.3389/fgene.2016.00083.
Liu H, Moroi Y, Yasumoto S, Kokuba H, Imafuku S, Nakahara T, Dainichi T, Uchi H, Tu Y, Furue M, Urabe K. Immunohistochemical localization of activated Stat3 and hTERT protein in psoriasis vulgaris. Eur J Dermatol. 2006;16(2):205-7.
Fujimoto R, Kamata N, Yokoyama K, Ueda N, Satomura K, Hayashi E, Nagayama M. Expression of telomerase components in oral keratinocytes and squamous cell carcinomas. Oral Oncol.
;37(2):132-40.
Palani J, Lakshminarayanan V, Kannan R. Immunohistochemical detection of human telomerase reverse transcriptase in oral cancer and pre-cancer. Indian J Dent Res. 2011;22(2):362.
Bettendorf O, Schmidt H, Eltze E, Rody A,
Herchenröder F, Jackisch C, Böcker W, Pfleiderer B. Quantitative measurement of telomerase activity and localization of its catalytic subunit (hTERT) in chronic inflammation of capsule formation around various model implants and in sarcomas in a rat model. J Biomed Mater Res A. 2008;85(3):646-50.
Zhong YQ, Xia ZS, Fu YR, Zhu ZH. Knockdown of hTERT by SiRNA suppresses growth of Capan-2 human pancreatic cancer cell via the inhibition of expressions of Bcl-2 and COX-2. J Dig Dis. 2010;11(3):176-84.
Li J, Huang X, Xie X, Wang J, Duan M. Human telomerase reverse transcriptase regulates cyclin D1 and G1/S phase transition in laryngeal squamous carcinoma. Acta Otolaryngol.
;131(5):546-51.
Strazisar M, Rott T, Glavac D. K-RAS and P53 mutations in association with COX-2 and hTERT expression and clinico-pathological status of NSCLC patients. Dis Markers. 2008;25(2):97-106.
González-Suárez E, Flores JM, Blasco MA. Cooperation between p53 mutation and high telomerase transgenic expression in spontaneous cancer development. Mol Cell Biol. 2002;22(20): 7291-301.
Fabricius EM, Kruse-Boitschenko U, Khoury R, Wildner GP, Raguse JD, Klein M and Hoffmeister B. Localization of telomerase hTERT protein in frozen sections of basal cell carcinomas (BCC) and tumor margin tissues. Intern J Oncol. 2009;35:1377-1394.
Hannen R, Bartsch JW. Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Letters.
;592:2023–2031.
Leão R , Apolónio JD, Lee D, Figueiredo A, Tabori U and Castelo-Branco P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci.
;25(22):2-12.
Rozengur, E. Protein Kinase D Signaling: Multiple Biological Functions in Health and Disease. Physiology (Bethesda). 2011;26(1):23-33.
LaValle, C.R., George, K.M., Sharlow, E.R. , Lazo, J.S., Wipf, P., Wang, Q.J.,. PKD1 potential new target for cancer therapy. Biochim Biophys Acta. 2010;1806(2):183–192.
Sundram V, Chauhan SC, Jaggi M. Emerging Roles of Protein Kinase D1 in Cancer. Mol Cancer Res. 2011;9(8):985-96.
Ristich VL, Bowman PH, Dodd ME, Bollag WB. Protein kinase D distribution in normal human epidermis, basal cell carcinoma and psoriasis. Br J Dermatol. 2006;154(4):586-93.
Zhang L, Li Z, Liu Y, Xu S, Tandon M, Appelboom B, LaValle CR, Chiosea SI, Wang L, Sen M, Lui VWY, Grandis JR, Wang QJ. Analysis of oncogenic activities of protein kinase D1 in head and neck squamous cell carcinoma. BMC Cancer.
;18(1):1107.
Ryvkin V, Rashel M, Gaddapara T, Ghazizadeh S. Opposing Growth Regulatory Roles of Protein Kinase D Isoforms in Human Keratinocytes. J Biol Chem. 2015;290(17):11199-208.
Ivanova P, Atanasova G, Poumay Y, Mitev V. Knockdown of PKD1 in normal human epidermal keratinocytes increases mRNA expression of keratin 10 and Involucrin: early markers of keratinocyte differentiation. Arch Dermatol Res. 2008;300(3): 139-45.
Ivanova P, Ishkitiev N, Kosekova G, Poumay Y, Mitev V. Proproliferative role of Protein Kinase C alpha and Protein Kinase C epsilon through downregulation of ERK1/2 activity in human epidermal keratinocytes. Bulg MJ. 2008;II(3):19-26.
Praskova M, Kalenderova S, Miteva L, Poumay Y, Mitev V. Dual role of protein kinase C on Mitogen Activated Protein Kinase activation and human keraticytes proliferation. Exp Dermatol. 2002;11(4):344-8.
Ivanova P, Tencheva Z, Mitev V. CaMKII delta stimulates proliferation of normal human epidermal keratinocytes through upregulation of ERK1/2 and c-Myc activity. Bulg MJ. 2008;
II(1):36-43.
Praskova M, Kalenderova S, Miteva L, Poumay Y, Mitev V. Ca(2+)/calmodulin-dependent protein kinase (CaM-kinase) inhibitor KN-62 suppresses the activity of mitogen-activated protein kinase (MAPK), c-myc activation and human keratinocyte proliferation. Arch Dermatol Res. 2002;294(4):198-202.
Ivanova P, Atanasova G, Poumay Y, Mitev V. Prodifferentiative role of PKD1 in human hTert keratinocytes. CR Acad Bulg Sci. 2007;60(5):557-562. 79. Ivanova P, Poumay Y, Mitev V. Protein Kinase D1 upregulates expression and activity of Extracellular Signal-Regulated Kinase 1/2 and EGFR in human hTert keratinocytes. CR Acad Bulg Sci. 2007;60(7):785-790.
Eckert RL, Efimova T, Dashti SR,
Balasubramanian S, Deucher A, Crish JF, Sturniolo M, and Bone F. Keratinocyte Survival, Differentiation, and Death: Many roads lead to Mitogen-Activated Protein Kinase. J Invest Dermatol. 2002;7(1):36-40.
Seo HR, Kwan YW, Cho CK, Bae S, Lee SJ, Soh JW, Chung HY, Lee YS. PKCα induces differentiation through ERK1/2 phosphorylation in mouse keratinocytes. Exp Mol Med. 2004;36(4):292-9.
Meng X, Qiu L, Song H, Dang N (). MAPK pathway involved in epidermal terminal differentiation of normal human epidermal keratinocytes. Open Med. 2018;13:189-195.
Bertrand-Vallery V, Belot N, Dieu M, Delaive
E, Ninane N, Demazy C, Raes M, Salmon M, Poumay Y, Debacq-Chainiaux F, Toussaint O. Proteomic
Profiling of Human Keratinocytes Undergoing UVBInduced Alternative Differentiation Reveals TRIpartite Motif Protein 29 as a Survival Factor. PLoS One. 2010;5(5):e10462.
Dumesic PA, Scholl FA, Barragan DI, Khavari PA. Erk1/2 MAP kinases are required for epidermal G2/M progression. J Cell Biol. 2009;185(3):409-22. 85. Jensen TG, Sørensen CB, Jensen UB, Bolund L. Epidermolysis bullosa simplex keratinocytes with extended lifespan established by ectopic expression of telomerase. Exp Dermatol. 2003;12(1):71–77.
Jordan CT, Cao L, Roberson ED, Duan S, Helms CA, Nair RP, Duffin KC, Stuart PE, Goldgar D, Hayashi G, Olfson EH, Feng BJ, Pullinger CR, Kane
JP, Wise CA, Goldbach-Mansky R, Lowes MA, Peddle L, Chandran V, Liao W, Rahman P, Krueger GG, Gladman D, Elder JT, Menter A, Bowcock AM. Rare and Common Variants in CARD14, Encoding an Epidermal Regulator of NF-kappaB, in Psoriasis. Am J Hum Genet. 2012;90(5):796-808.
Agell N, Bachs O, Rocamora N, Villalonga P. Modulation of the Ras/Raf/MEK/ERK pathway by
Ca(2+), and calmodulin. Cell Signal. 2002;
(8):649-54.
Tebar F, Lladó A, Enrich C. Role of calmodulin in the modulation of the MAPK signalling pathway and the transactivation of epidermal growth factor receptor mediated by PKC. FEBS Lett. 2002;517(1-3):206-10.
Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci. 2006;31(5):268-75.
Husain H, Psyrri A, Markovic A, Rampias T, Pectasides E, Wang H, Slebos R, Yarbrough WG, Burtness B, Chung CH. Nuclear epidermal growth factor receptor and p16 expression in head and neck squamous cell carcinoma. Laryngoscope.
;122(12):2762-8.
Kasper M, Jaks V, Hohl D, Toftgård R. Basal cell carcinoma — molecular biology and potential new therapies. J Clin Invest. 2012;122(2):455-63.
Van Doorslaer K, Burk RD. Association between hTERT activation by HPV E6 proteins and oncogenic risk. Virology. 2012;433(1):216-9.
Tran QT, Kennedy LH, Leon CS,
Bodreddigari S, Goodwin SB, Sutter CH, Sutter TR. EGFR regulation of epidermal barrier function. Physiol Genomics. 2012;44(8):455-69.
Rykx A, De Kimpe L, Mikhalap S, Vantus T, Seufferlein T, Vandenheede J, Lint J. Protein kinase D: a family affair. FEBS Lett. 2003;546:81-86.
Ivanova PV, Maneva AI. Protein Kinase D1 – structure, activation, regulation, substrates and functions. Role in skin pathology. Arch Derm Res. 2019; accepted. doi.org/10.1007/s00403-019-01946-5
Schomwasser D, Marais R, Marshal C, Parker P. Activation of the Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Pathway by Conventional, Novel, and Atypical Protein Kinase C Isotypes. Mol Cell Biol. 1998;18(2):790-798.
Chiou YS, Sang Sh, Cheng KH, Ho CT, Wang YJ, Pan MH. Peracetylated (−)-epigallocatechin-3gallate (AcEGCG) potently prevents skin carcinogenesis by suppressing the PKD1-dependent signaling pathway in CD34+ skin stem cells and skin tumors. Carcinogenesis. 2013;34(6):1315–1322.
Zuo QP, Liu SK, Li ZJ, Li B, Zhou YL, Guo R, Huang LH. NF-kappaB p65 modulates the telomerase reverse transcriptase in the HepG(2) hepatoma cell line. Eur J Pharmacol. 2011;
(1-3):113-20.
Multhoff G, Molls M, Radons J. Chronic inflammation in cancer development. Front Immunol. 2012;12(2):98.
Yuan J, Pandol SJ. PKD signaling and pancreatitis. J Gastroenterol. 2016;51(7):651–659.
Upadhyay K, Park JE, Yoon TW, Halder P, Kim YI, Metcalfe V, Talati AJ, English BK, Yi AK. Group B Streptococci Induce Proinflammatory Responses via a Protein Kinase D1-Dependent Pathway. J Immunol. 2017;198(11):4448-4457.
Cowell CF, Döppler H, Yan IK, Hausser A, Umezawa Y, Storz P. Mitochondrial diacylglycerol initiates protein-kinase D1-mediated ROS signaling. J Cell Sci. 2009;122:919-928.
Döppler H, Panayiotou R, Reid EM, Maimo W, Bastea L, Storz P. The PRKD1 promoter is a target of the KRas-NF-κB pathway in pancreatic cancer. Sci Rep. 2016;6:33758.
Liggett WH Jr, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16(3): 1197-206.
Kubo A, Nakagawa K, Varma RK, Conrad NK, Cheng JQ, Lee WC, Testa JR, Johnson BE, Kaye FJ, Kelley MJ. The p16 Status of Tumor Cell Lines Identifies Small Molecule Inhibitors Specific for
Cyclin-dependent Kinase 4. Clin Cancer Res. 1999;5(12):4279-86.
Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501-12.
Rashel M, Alston N, Ghazizadeh S. Protein Kinase D1 Has a Key Role in Wound Healing and Skin Carcinogenesis. J Invest Dermatol. 2014;134:902–909. 108. Singh A, Singh A, Sand JM, Heninger E, Hafeez BB, Verma AK. Protein Kinase C
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.