PROTEIN KINASE D1: STRUCTURE, ACTIVATION, REGULATION, SUBSTRATES, AND FUNCTIONS. ROLE IN SKIN PATHOLOGY.
Keywords:
PKD1, Protein kinase D1, PRKD1, PKD2, PKD3, Inflammatory skin diseases, Skin cancer, HNC, Head and neck cancer, PKD1 reviewAbstract
Protein kinase D1 (PKD1) posses proproliferative and antidifferentiative functions in human and mouse keratinocytes, prodifferentive function in hTert (N/Tert-1 or N-hTERT) keratinocytes, participate also in wound-healing process in mouse epidermis. Loss of PKD2 enhanced keratinocytes-proliferative potential, while loss of PKD3 resulted in a progressive proliferation defect, loss of clonogenicity, and diminished tissue regenerative ability. This proliferation defect was correlated with upregulation of CDK4/6 inhibitor p15INK4B and induction of a p53-independent G1 cell-cycle arrest. Simultaneous silencing of PKD isoforms resulted in a more pronounced proliferation defect consistent with a predominant role for PKD3 in proliferating keratinocytes. There are no data concerning regulation of the PKD1, 2 and/or 3 kinase expression in skin. The mechanisms regulating PKD1 expression are merely studied only in pancreatic and prostate cancer cells. In skin pathology, the kinase is with increased expression in psoriatic lesions and basocellular carcinoma (BCC) and downregulated in head and neck spinocellular carcinoma (HNSCC). In the multistage mouse skin carcinogenesis model, the expression of PKD1 and CD34+ (cutaneous cancer stem-cell marker) are increased with increased expression of p53, p21, cMyc, cyclin B, p-CDK1, and Cdc25A and inhibited activation of extracellular signal-regulated kinase 1/2 (ERK1/2), increased nuclear factor-kappaB (NF-κB), cyclic adenosine 3′,5′-monophosphate-responsive elementbinding protein (CREB), and CCAATenhancer-binding protein (C/EBPs) activation by increased phosphorylation of c-Jun-N-terminal kinase 1/2 (JNK1/2), p38 and phosphatidylinositol 3-kinase (PI3K)/Akt and by increased downstream target gene expression, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), ornithine decarboxylase (ODC), and vascular endothelial growth factor (VEGF). The hyperplastic and inflammatory responses in PKD1-deficient mice to topical phorbol ester were significantly suppressed suggesting involvement of PKD1 in tumor promotion (and inflammation). Consistently, when subjected to two-stage chemical skin carcinogenesis protocol, these mice were resistant to papilloma formation when compared to control littermates. There are no other data for PKD1 participation in inflammatory skin process and expression in other premalignant skin diseases. Recently, hotspot-activating mutation in PKD1, resulting in an p.Glu710Asp aminoacid substitution, was detected in 73% of salivary Polymorphous low-grade adenocarcinoma (PLGA), associated with metastasis-free survival. Its increased expression is connected with late phases of malignant melanoma, associated with high metastatic potential. PKD1 participates in the pathology of inflammatory skin diseases and skin oncogenesis, but the mechanisms of regulation of its expression and action in skin in norm and in pathological processes are still unsufficient. PKD1 is upregulated merely in BCCs and in pancreatic cancer and downregulated in HNSCC, prostate, breast gastric, and colon cancers.
References
La Valle CR, George KM, Sharlow ER, Lazo JS, Wipf P, Wang QJ. PKD1 potential new target for cancer therapy. Biochim Biophys Acta 2010;2:183– 192.
Rozengurt E. Protein kinase D signaling: multiple biological functions in health and disease. Physiology 2011;26:23–33.
Stafford MJ, Watson SP, Pears CJ. PKD: a new protein kinase C-dependent pathway in platelets. Blood 2003;101(4):1392–1399.
Sundram V, Chauhan SC, Jaggi M. Emerging roles of protein kinase D1 in cancer. Mol Cancer Res. 2011;9(8):985–996.
Rozengurt E, Osvaldo R, Waldron RT. Protein kinase D signaling. J Biol Chem. 2005;280(14):3205– 13208.
Rykx A, De Kimpe L, Mikhalap S, Vantus T, Seufferlein T, Vandenheede JR, Van Lint J. Protein kinase D: a familyaffair. FEBS Lett. 2003;546(1):81– 86.
Steinberg SF. Regulation of protein kinase D1 activity. Mol Pharmacol. 2012;81(3):284–291.
Su Y, Wang P, Shen H, Sun Z, Xu C, Li G, Tong T, Chen J. Protein kinase D1-mediated classical protein secretory pathway regulates oncogene Ras-induced senescent response. J Cell Sci. 2018;131(6):jcs207217.
Bollag WB, Dodd ME, Shapiro BA. Protein kinase D and keratinocyte proliferation. Drug News Perspect. 2004;17(2):117–126.
Ivanova P, Atanasova G, Poumay Y, Mitev V. Knockdown of PKD1 in normal human epidermal keratinocytes increases mRNA expression of keratin 10 and involucrin: early markers of keratinocyte differentiation. Arch Derm Res. 2008;300(3):139–145.
Ristich VL, Bowman PH, Dodd ME, Bollag WB. Protein kinase D distribution in normal human epidermis, basal cell carcinoma and psoriasis. Br J Dermatol. 2006;154(4):586–593.
Durand N, Borges S, Storz P. Protein kinase D enzymes as regulators of EMT and cancer cell invasion. J Clin Med. 2016;5(20):1–13.
Reinhardt R, Truebestein L, Schmidt HA, Leonard TA. It Takes Two to Tango: Activation of Protein Kinase D by Dimerization. Bioessays. 2020;42(4):e1900222.
Elsner DJ, Siess KM, Gossenreiter T, Hartl M, Leonard TA. A ubiquitin-like domain controls protein kinase D dimerization and activation by transautophosphorylation. J Biol Chem.
;294(39):14422-14441.
Ren B. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis. Front Cell Dev Biol. 2016;4:37.
Praskova M, Kalenderova S, Miteva L, Pomay Y, Mitev V. Dual role of protein kinase C on mitogen activated protein kinase activation and human keraticytes proliferation. Exp Dermatol. 2002;11(4):344–348.
Ivanova P, Ishkitiev N, Kosekova G, Poumay Y, Mitev V. Proproliferative role of protein kinase C alpha and protein kinase C epsilon through downregulation of ERK1/2 activity in human epidermal keratinocytes. Bulg M J. 2008;II(3):19–26.
Gschwendt M, Johannes FJ, Kittstein W,
Marks F. Regulation of Protein Kinase Cμ by Basic Peptides and Heparin. J Biol Chem.
;272(33):20742–20746.
Bollag WB, Bollag RJ. UV-activation of PKD: implications for skin cancer. Future Oncol. 2011;7(4):485–487.
Chang JK, Ni Y, Ha NL, Sinnett-Smith J, Jacamo R, Rey O, Young SH, Rozengurt E. Protein kinase D1 (PKD1) phosphorylation on Ser203 by type I p21-activated kinase (PAK) regulates PKD1 localization. J Biol Chem. 2017;292(23):9523–9539.
Cobbaut M, Derua R, Parker PJ, Waelkens E, Janssens V, Van Lint J. Protein kinase D displays intrinsic Tyr autophosphorylation activity: insights into mechanism and regulation. FEBS Lett.
;592(14):2432-2443.
Doppler H, Panayiotou R, Reid EM, MaimoW Bastea L, Storz P. The PRKD1 promoter is a target of the KRas-NF-κB pathway in pancreatic cancer. Sci Rep. 2016;6:33758.
Luef B, Handle F, Kharaishvili G, Hager M, Rainer J, Janetschek G, Hruby S, Englberger C, Bouchal J, Santer FR, Culig Z. The AR/NCOA1 axis regulates prostate cancer migration by involvement of PRKD1. Endocr Relat Cancer. 2016;23(6):495–508.
Zhang L, Zhao Z, Xu S, Tandon M, LaValle CR, Deng F, Wang WJ. Androgen suppresses protein kinase D1 expression through fibroblast growth factor receptor substrate 2 in prostate cancer cells. Oncotarget. 2017;8(8):12800–12811.
Nickkholgh B, Sittadjody S, Rothberg MB, Fang X, Li K, Chou JW, Hawkins GA, Balaji KC. Betacatenin represses protein kinase D1 gene expression by non-canonical pathway through MYC/MAX transcription complex in prostate cancer. Oncotarget. 2017;8(45):78811–78824.
Hausser A, Storz P, Hubner S, Braedlin I, Martinez-Moya M, Link G, Johannes F. Protein kinase C mu selectively activates the mitogen-activated protein kinase (MAPK) p42 pathway. FEBS Lett. 2001;492:39–44.
Ivanova PV, Maneva AI. Comparison analysis of basocellular carcinom and spinocellular carcinom— Protein kinase D1, Wnt/β-cateninand epithelial to mesenchimal transition (markers). IJCRR
;9(2):20193–20251.
Wirth M, Mahboobi S, Kramer OH, Schneider G. Concepts to target MYC in pancreatic cancer. Mol Cancer Ther. 2016;15(8):1792–1798.
Song DH, Dominguez I, Mizuno J, Kaut M, Mohr SC, Seldin DC. CK2 phosphorylation of the armadillo repeat region of β-catenin potentiates Wnt signaling. J Biol Chem. 2003;278(26):24018–24025.
Ivanova P, Tencheva Z, Mitev V. CaMKII delta stimulates proliferation of normal human epidermal keratinocytes through upregulation of ERK1/2 and c-Myc activity. Bulg M J 2008;II(1): 36–44.
Salehi-Tabar R, Nguyen-Yamamoto L, Tavera-Mendoza LE, Quail T, Dimitrov V, An BS, Glass L, Goltzman D, White JH. Vitamin D receptor as a master regulator of the c-MYC/MXD1 network. PNAS 2012;109(46):18827–18832.
Ivanova PV, Maneva AI. Epidermal Growth Factor Receptor, Human telomerase subunit - hTERT, Protein Kinase D1 and p16INK4a in normal keratinocytes and premalignant lesions of skin and oral cavity. EESJ 2020;(accepted).
Steiner TS, Ivison SM, Yao Y, Kifayet A. Protein kinase D1 and D2 are involved in chemokine release induced by toll-like receptors 2, 4, and 5. Cell Immunol. 2010;264(2):135–142.
Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 2017;9(52):1–45.
Sin YY, Baillie GS. Protein kinase D in the hypertrophy pathway. Biochem Soc Trans.
;40:287–289.
Wang Y, Zhou BP. Epithelial–mesenchymal transition—a hallmark of breast cancer metastasis. Cancer Hallm. 2013;1(1):38–49.
Storz P. Protein kinase D1: gatekeeper of the epithelial phenotype and key regulator of cancer metastasis? Br J Cancer 2018;118(4):459–461.
Durand N, Bastea LI, Long J, Doppler H, Ling K, Storz P. Protein kinase D1 regulates focal adhesion dynamics and cell adhesion through phosphatidylinositol-4-phosphate 5-kinase type-l γ. Sci Rep. 2016;24(6):35963.
Lacalle RA, de Karam JC, Martinez-Munoz L, Artetxe I, Peregil RM, Sot J, Rojas AM, Goni FM, Mellado M, Manes S. Type I phosphatidylinositol 4phosphate 5-kinase homo- and heterodimerization determines its membrane localization and activity. FASEB J 2015;29(6):2371–2385.
Wu Z, Li X, Sunkara M, Spearman H, Morris AJ, Huang C. PIPKIγ regulates focal adhesion dynamics and colon cancer cell invasion. PLoS One 2011;6(9):e24775.
Le OT, Cho OY, Tran MH, Kim JA, Chang S, Jou I, Lee SY. Phosphorylation of phosphatidylinositol 4-phosphate 5-kinase γ by Akt regulates its interaction with talin and focal adhesion dynamics. Biochim Biophys Acta 2015;10 Pt A:2432–2443.
Cao S, Chen C, Xue J, Huang Y, Yang X, Ling K. Silencing of type Iγ phosphatidylinositol phosphate kinase suppresses ovarian cancer cell proliferation, migration and invasion. Oncol Rep. 2017;38(1): 253–262.
Sun Y, Turbin DA, Ling K, Thapa N, Leung S, Huntsman DG, Anderson RA. Type I gamma phosphatidylinositol phosphate kinase modulates invasion and proliferation and its expression correlates with poor prognosis in breast cancer. Breast Cancer Res. 2010;12(1):R6.
Klein JD, Grandis JR. The molecular pathogenesis of head and neck cancer. Cancer Biol Ther. 2010;9(1):1–7.
Pandolfi S, Stecca B. Hedgehog-Gli signaling in basal cell carcinoma and other skin cancers:
prospects for therapy. Res Rep Biol. 2015;6:55–71.
Suh Y, Amelio I, Urbano TG, Tavassoli M. Clinical update on cancer: molecular oncology of head and neck cancer. Cell Death Dis. 2014;5(1):e1018.
Balato A, Di Caprio R, Lembo S, Mattii M, Megna M, Schiattarella M, Tarantino G, Balato N, Ayala F, Monfrecola G. Mammalian target of rapamycin in inflammatory skin conditions. Eur J Inflamm. 2014;12(2):341–350.
Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med.
;5(4):a006098.
The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015;517: 576–582.
Sambandam V, Frederick MJ, Shen L, Tong P, Rao X, Peng Sh, Singh R, Mazumdar T, Huang Ch, Li Q, Pickering CR, Myers JN, Wang J, Johnson FM. PDK1 Mediates NOTCH1- mutated head and neck squamous carcinoma vulnerability to therapeutic PI3K/mTOR inhibition. Clin Cancer Res. 2019; https ://doi.org/10.1158/1078-0432.ccr-18-3276.
Badura S, Tesanovic T, Pfeifer H, Wystub S, Nijmeijer BA, Liebermann M, Falkenburg JH, Ruthardt M, Ottmann OG. Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. PloS One 2013;8(11):e80070.
Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A, Won H, Wong W, Berger M, de Stanchina E, Barratt DG, Cosulich S, Klinowska T, Rosen N, Shokat KM.
Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature
;534(7606):272–276.
Rothenberg SM, Ellisen LW. The Molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Investig. 2012;122(6):1951–1957.
Kofler K, Erdel M, Utermann G, Baier G. Molecular genetics and structural genomics of the human protein kinase C gene module. Genome Biol. 2002;3(3):1–10.
Liou GY, Doppler H, Braun UB, Panayiotou R, Buzhardt MS, Radisky DC, Crawford HC, Fields AP, Murray NR, Wang QJ, Leitges M, Storz P. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia. Nat Commun. 2015;6:6200.
Liou GY, Leitges M, Storz P. Pancreatic oncogenic signaling cascades converge at protein kinase D1. Cell Cycle 2015;14(10):1489–1490.
Doppler H, Storz P. Mitochondrial and oxidative stressmediated activation of protein kinase D1 and its importance in pancreatic cancer. Front Oncol. 2017;7(41):1–5.
Eiseler T, Kohler C, Nimmagadda SC, Jamali A, Funk N, Joodi G, Storz P, Seufferlein T.
Protein kinase D1 mediates anchorage-dependent and -independent growth of tumor cells via the zinc finger transcription factor Snail1. J Biol Chem. 2012;287(39):32367–32380.
Yuan J, Pandol SJ. PKD signaling and pancreatitis. J Gastroenterol. 2016;51(7):651–659.
Kodaz H, Kostek O, Hacioglu MB, Erdogan B, Kodaz CE, Haclibekirogli I, Turkmen E, Uzunoglu S, Cicin I. Frequency of Ras mutations (KRAS, NRAS, HRAS) in human solid cancer. EJMO 2017;1(1):1–7.
Conway JRW, Herrmann D, Evans TRJ, Morton JP, Timpson P. Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut 2019;68:742–758.
Murthy D, Attri KS, Singh PK.
Phosphoinositide 3-kinase signaling pathway in pancreatic ductal adenocarcinoma progression, pathogenesis, and therapeutics. Front Physiol 2018;9:335.
So PL, Wang GY, Wang K, Chuang M, Chiueh VC, Kenny PA, Epstein EH Jr. PI3K-AKT signaling is a downstream effector of retinoid prevention of murine basal cell carcinogenesis. Cancer Prev Res. 2014;7:407–417.
Ganju A, Chauhan SC, Hafeez BB, Doxtater K, Tripathi MK, Zafar N, Yallapu MM, Kumar R, Jaggi M. Protein kinase D1 regulates subcellular localisation and metastatic function of metastasis-associated protein 1. Br J Cancer 2018;118:587–599.
Arun SN, Kaddour-Djebbar I, Shapiro BA, Bollag WB. Ultraviolet B irradiation and activation of protein kinase D in primary mouse epidermal keratinocytes. Oncogene 2011;30(13):1586–1596.
Wang P, Limin H, Shen H, Wang P, Lv C, Zhao G, Niu J, Xue L, Wang QJ, Tong T, Chen J. Protein kinase D1 is essential for Ras-induced senescence and tumor suppression by regulating senescence-associated inflammation. Proc Natl Acad Sci. USA 2014;111(21):7683–7688.
Wu S, Ma S, Yin X, Yi P, Liu J. An integrated PKD1-dependent signaling network amplifies IRE1 prosurvival signaling. J Biol Chem.
;294(29):11119-11130.
Liou GY, Doppler H, DelGiorno KE, Zhang L, Leitges M, Crawford HC et al. Mutant KRas-induced mitochondrial oxidative stress in acinar cells upregulates EGFR signaling to drive formation of pancreatic precancerous lesions. Cell Rep. 2016;14(10): 2325–2336.
Ivanova P, Poumay Y, Mitev V. Protein kinase D1 upregulates expression and activity of extracellular signal regulated kinase 1/2 and EGFR in human hTert keratinocytes. CR Acad Bulg Sci. 2007;60(7):783–788.
Harikumar KB, Kunnumakkara AB, Ochi N, Tong Z, Deorukhkar A, Sung B, Kelland L, Jamieson
S, Sutherland R, Raynham T, Charles M, Bagherzadeh A, Foxton C, Boakes A, Farooq M, Maru D,
Diagaradjane P, Matsuo Y, Sinnett-Smith J, Gelovani J, Krishnan S, Aggarwal BB, Rozengurt E, Ireson CR, Guha S. A novel small-molecule inhibitor of protein kinase D blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther 2010;9(5):1136–1146.
Upadhyay K, Park JE, Yoon TW, Halder P, Kim YI, Metcalfe V, Talati AJ, English BK, Yi AK. Group B streptococci induce proinflammatory responses via a protein kinase D1-dependent pathway. J Immunol. 2017;198(11):4448–4457.
Sutton JA, Rogers LM, Dixon BREA, Kirk L, Doster R, Algood HM, Gaddy JA, Flaherty R, Manning SD, Aronoff DM. Protein kinase D mediates inflammatory responses of human placental macrophages to Group B Streptococcus. Am J Reprod Immunol. 2019;81(3):e13075.
Plummer R, Hu GF, Liu T, Yoo J. Angiogenin regulates PKD activation and COX-2 expression induced by TNF-α and bradykinin in the colonic myofibroblast. Biochem Biophys Res Commun. 2020;525(4):870-876.
Matthews SA, Navarro MN, Sinclair LV, Emslie E, Feijoo-Carnero C, Cantrell DA. Unique functions for protein kinase D1 and protein kinase D2 in mammalian cells. Biochem J 2010;432(1):153–163.
Park JE, Kim YI, Yi AK. Protein kinase D1: a new component in TLR9 signaling. J Immunol. 2008;181(3):2044–2055.
Young-In K, Park JE, Kwon KH, Hong CY, Yi AK. Interleukin-1 receptor-associated kinase 2- and protein kinase D1-dependent regulation of IRAKmonocyte. Expression by CpG DNA. PLoS One
;7(8):43970.
Baker J, Falconer AMD, Wilkinson DJ, Europe-Finner GN, Litherland GJ, Rowan AD. Protein kinase D3 modulates MMP1 and MMP13 expression in human chondrocytes. PLoS One.
;13(4):e0195864.
Ha CH, Jin ZG. Protein kinase D1, a new molecular player in VEGF signaling and angiogenesis. Mol Cells. 2009;28(1):1-5.
Ivanova PV, Maneva AI. Protein Kinase D1, Ras, p16 and c-Myc in skin pathology, stromal activity. Src, PKCε, IL-6/ STAT3/ c-Myc , IL-6 and IL-8 - metastatic potential. Protein Kinase C expression profile in Basocellular carcinoma. Treatment options. 2020; submitted.
Wang Y, Hoeppner LH, Angom RS, Wang E, Dutta S, Doeppler HR, Wang F, Shen T, Scarisbrick IA, Guha S, Storz P, Bhattacharya R, Mukhopadhyay D. Protein kinase D up-regulates transcription of VEGF receptor-2 in endothelial cells by suppressing nuclear localization of the transcription factor AP2β. J Biol Chem. 2019;294(43):15759-15767.
Pal D, Basu A. The unique protein kinase Cη: implications for breast cancer (review). Int J Oncol. 2014;45:493–498.
Ryvkin V, Rashel M, Gaddapara T, Ghazizadeh S. Opposing growth regulatory roles of protein kinase D isoforms in human keratinocytes. J Biol Chem. 2015;290(17):11199–11208
Leonard MK, Kommagani R, Payal V, Mayo LD, Shamma HN and Kadakia MP. ∆Np63α regulates keratinocyte proliferation by controlling PTEN expression and localization. Cell Death and Differentiation 2011;18:1924–1933.
Dumesic PA., Scholl FA, Barragan DI, and Khavari PA. Erk1/2 MAP kinases are required for epidermal G2/M progression. J Cell Biol.
;185(3):409–422.
Li L, Sampat K, Hu N, Zakari J, Yuspa SH. Protein kinase C negatively regulates Akt activity and modifies UVC-induced apoptosis in mouse keratinocytes. J Biol Chem. 2006;281(6): 3237-43.
Jadali A, Ghazizadeh S. Protein kinase D is implicated in the reversible commitment to differentiation in primary cultures of mouse keratinocytes. J Biol Chem 2010;285:23387–23397.
Rashel M, Alston N, Ghazizadeh S. Protein kinase D1 has a key role in wound healing and skin carcinogenesis. J Investig Dermatol. 2014;134: 902–909.
Jansen AP, Verwiebe EG, Dreckschmidt NE, Wheeler DL, Oberley TD, Verma AK. Protein kinase C-epsilon transgenic mice: a unique model for metastatic squamous cell carcinoma. Cancer Res. 2001;61(3):808–812.
Singh A, Singh A, Sand JM, Heninger E, Hafeez BB, Verma AK. Protein kinase C, which is linked to ultraviolet radiationinduced development of squamous cell carcinomas, stimulates rapid turnover of adult hair follicle stem cells. J Skin Cancer 2013;2013:452425.
Wheeler DL, Li Y, Verma AK. Protein kinase C epsilon signals ultraviolet light-induced cutaneous damage and development of squamous cell carcinoma possibly through induction of specific cytokines in a paracrine mechanism. Photochem Photobiol.
;https ://doi.org/10.1562/2004-08-12-RA-271.1.
Aziz MH, Hafeez BB, Sand JM, Pierce DB, Aziz SW, Dreckschmidt NE, Verma AK. Protein kinase Cɛ mediates Stat- 3Ser727 phosphorylation, Stat3-regulated gene expression, and cell invasion in various human cancer cell lines through integration with MAPK cascade (RAF-1, MEK1/2, and ERK1/2). Oncogene 2010;29(21):3100–3109.
Akita Y. Protein kinase cepsilon: novel aspects of its multiple functions in cellular signaling. FEBS J 2008;275(16):3987.
Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li FP, Rheinwald JG. Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol. 2000;20(4):1436–1447.
Ivanova P, Atanasova G, Minner F, Poumay Y, Mitev V. Prodifferentiative role of PKD1 in human hTert keratinocytes. CR Acad Bulg Sci.
;60(5):557–562.
Mascia F, Mariani V, Girolomoni G, Pastore S. Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. Am J Pathol. 2003;163(1):303–312.
Pastore S, Mascia F, Mariotti F, Dattilo C, Mariani V, Girolomoni G. ERK1/2 regulates epidermal chemokine expression and skin inflammation. J Immunol. 2005;174:5047–5056.
Lu J, Goldstein KM, Chen P, Huang S, Gelbert LM, Nagpal S. Transcriptional profiling of keratinocytes reveals a vitamin D-regulated epidermal differentiation network. J Investig Dermatol. 2005;124:778–785.
Piotrowska A, Wierzbicka J, Żmijewski MA. Vitamin D in the skin physiology and pathology. Acta Biochim Pol. 2016;63:1–13.
Cataisson C, Joseloff E, Murillas R, Wang A, Atwell C, Torgerson S, Gerdes M, Subleski J, Gao JL, Murphy PM, Wiltrout RH, Vinson C, Yuspa SH. Activation of cutaneous protein kinase Cα induces keratinocyte apoptosis and intraepidermal inflammation by independent signaling pathways. J Immunol. 2003;171:2703–2713.
Cataisson C, Pearson AJ, Torgerson S, Nedospasov SA, Yuspa SH. Protein kinase C alphamediated chemotaxis of neutrophils requires NF-kappa B activity but is independent of TNF alpha signaling in mouse skin in vivo. J Immunol. 2005;174(3): 1686–1692.
Zhao Y, Fishelevich R, Petrali JP, Zheng L, Anatolievna MA, Deng A, Eckert RL, Gaspari AA. Activation of keratinocyte protein kinase Cζ in psoriasis plaques. J Investig Dermatol.
;128(9):2190–2197.
Cohen EEW, Lingen MW, Zhu B, Zhu H, Straza MW, Pierce C, Martin LE, Rosner MR. Protein kinase Cζ mediates epidermal growth factor-induced growth of head and neck tumor cells by regulating mitogen-activated protein kinase. Cancer Res. 2006;66(12):6296–6303.
Hirai T, Chida K. Protein kinase Cζ (PKCζ): activation mechanisms and cellular functions. J Biochem. 2003;133:1–7.
Raaby L, Otkjar K, Salvskov-Iversen ML, Johansen C, Iversen A. Characterization of the expression of 14-3-3 isoforms in psoriasis, basal cell carcinoma, atopic dermatitis and contact dermatitis. Dermatol Rep. 2010; 2(2):e14.
Jost M, Kari C, Rodeck U. The EGF receptor—an essential regulator of multiple epidermal functions. Eur J Dermatol. 2000;10(7):505–510.
Spallone G, Botti E, Costanzo A. Targeted therapy in nomelanoma skin cancers. Cancers (Basel) 2011;3(2):2255–2273.
Okumura H, Kita Y, Yokomakura N, Uchikado Y, Setoyama T, Sakurai H, Omoto I, Matsumoto M, Owaki T, Ishigami S, Natsugoe S. Nuclear expression of 14-3-3 sigma is related to prognosis in patients with esophageal squamous cell carcinoma. Anticancer Res. 2010;30(12):5175–5179.
Bertrand-Vallery V, Belot N, Dieu M, Delaive E, Ninane N, Demazy C, Raes M, Salmon M, Poumay Y, Debacq-Chainiaux F, Toussaint O. Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite motif protein 29 as a survival factor. PloS One 2010;5(5):e10462.
Meephansan J, Komine M, Tsuda H, Ohtsuki M. Suppressive effect of calcipotriol on the induction of matrix metalloproteinase (MMP)-9 and MMP-13 in a human squamous cell carcinoma cell line. Clin Exper Dermatol. 2012;37(8):889–896.
Impola U, Jeskanen L, Ravanti L, Syrjanen S, Baldursson B, Kahari VM, Saarialho-Kere U. Expression of matrix metalloproteinase (MMP)-7 and MMP-13 and loss of MMP-19 and p16 are associated with malignant progression in chronic wounds. Br J Dermatol. 2005;152(4):720–726.
Akgül B, Pfefferle R, Marcuzzi GP, Zigrino P, Krieg T, Pfister H, Mauch C. Expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MT1-MMP in skin tumors of human papillomavirus type 8 transgenic mice. Exp Dermatol. 2006;15(1): 35–42.
Kerkela E, Saarialho-Kere U. Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol. 2003;12(2):109–125.
Goździalska A, Wojas-Pelc A, Drąg J, Brzewski P, Jaśkiewicz J, Pastuszczak M. Expression of metalloproteinases (MMP-2 and MMP-9) in basalcell carcinoma. Mol Biol Rep. 2016;43(10):1027– 1033.
Georgakopoulou EA, Achtari MD, Achtaris M, Foukas PG, Kotsinas A. Oral lichen planus as a preneoplastic inflammatory model. J Biomed Biotechnol 2012;2012:Article ID 759626.
Venugopal A, Maheswari TNU. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: a systematic review. J Oral Maxillofac Pathol. 2016;20(3):474.
Hampton PJ, Ross OK, Reynolds NJ. Increased nuclear beta-catenin in suprabasal involved psoriatic epidermis. Br J Dermatol. 2007;157(6): 1168–1177.
Li ZX, Ji FP, Peng ZH, Wang K. Expression of E-cadherin, beta-catenin and cyclin D1 in epidermal skin lesions of patients with active psoriasis vulgaris. Nan Fang Yi Ke Da Xue Xue Bao 2008;28(4):545–547.
Mahomed F, Altini M, Meer S. Altered Ecadherin/betacatenin expression in oral squamous carcinoma with and without nodal metastasis. Oral Dis. 2007;13(4):386–392.
Ivanova PV, Dimov I. Crosstalk between different signal pathways and vitamin D and vitamin D3 receptor—VDR in the process of oncogenesis in skin. Bulg Med. 2017;7(2):11–24.
Ziv E, Rotem C, Miodovnik M, Ravid A, Koren R. Two modes of ERK activation by TNF in keratinocytes: different cellular outcomes and bidirectional modulation by vitamin D. J Cell Biochem. 2008;104:606–619.
Dotto GP. Signal transduction pathways controlling the switch between keratinocyte growth anddifferentiation. Crit Rev Oral Biol Med. 1999;10(4):442–457.
Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. TRENDS Biochem Sci. 2006;31(5):268–275.
Gazel A, Nijhawan RI, Walsh R, Blumenberg M. Transcriptional profiling defines the roles of ERK and p38 kinases in epidermal keratinocytes. J Cell Physiol. 2008;215(2):292-308.
Meng X, Qiu L, Song H, Dang N. MAPK pathway involved in epidermal terminal differentiation of normal human epidermal keratinocytes. Open Med. 2018;13:189-195.
Chen Y, Zhang J, Ge X, Du J, Deb DK, Li YC. Vitamin D receptor inhibits nuclear factor κB activation by interacting with IκB kinase β protein. J Biol Chem. 2013;288(27):19450–19458.
Janjetovic Z, Zmijewski MA, Tuckey RC, DeLeon DA, Nguyen MN, Pfeffer LM, Slominski AT. 20-Hydroxycholecalciferol, product of vitamin D3 hydroxylation by P450scc, decreases NF-kB activity by increasing IkBa levels in human keratinocytes. PLoS One 2009;4(6):e5988.
Ivanova PV, Dimov I. Role of vitamin D and vitamin D3 receptor—VDR in EMT and oncogenesis in skin and other tissues nonspecific for its action. Bulg Med. 2018;8(1):9–23.
Lin R, Nagai Y, Sladek R, Bastien Y, Ho J, Petrecca K, Sotiropoulou G, Diamandis EP, Hudson TJ, White JH. Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol. 2002;16(6):243–1256.
Lodygin D, Yazdi AS, Sander CA, Herzinger T, Hermeking H. Analysis of 14-3-3σ expression in hyperproliferative skin diseases reveals selective loss associated with CpG-methylation in basal cell carcinoma. Oncogene 2003;22:5519–5524.
Lodygin D, Hermeking H. The role of epigenetic inactivation of 14-3-3σ in human cancer. Cell Res. 2005;15(4):237–246.
Du C, Zhang C, Hassan S, Biswas MH, Balaji KC. Protein kinase D1 suppresses epithelial-tomesenchymal transition through phosphorylation of Snail. Cancer Res. 2010;70(20):7810–7819.
Barbera MJ, Puig I, Dominguez D, JulienGrille S, Guaita-Esteruelas S, Peiro S, Baulida J, Franci C, Dedhar S, Larue L, Garcia de Herreros AG. Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 2004;23:7345–7354.
Louro ID, Bailey EC, Li X, South LS, McKie-Bell PR, Yoder BK, Conway CH, Johnson MR, Hill AE, Johnson RL, Ruppert JM. Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res. 2002;15(62):5867.
Sawhney M, Rohatgi N, Kaur J, Shishodia S, Sethi G, Gupta SD, Deo SV, Shukla NK, Aggarwal BB, Ralhan R. Expression of NF-kB parallels COX-2 expression in oral precancer and cancer: association with smokeless tobacco. Int J Cancer
;120(12):2545–2556.
Goodin S, Shiff S. NSAIDs for the chemoprevention of oral cancer: promise or pessimism? Clin Cancer Res. 2004;10(5):1561–1564.
Chiou YS, Sang Sh, Cheng KH, Ho CT, Wang YJ, Pan MH. Peracetylated (−)-epigallocatechin3-gallate (AcEGCG) potently prevents skin carcinogenesis by suppressing the PKD1-dependent signaling pathway in CD34 + skin stem cells and skin tumors. Carcinogenesis 2013;34(6):1315–1322.
Jing L, Ling J, Jieping C, Wengeng Z, and Zhijia Y. Wnt/β-catenin signaling pathway in skin carcinogenesis and therapy. Biomed Res Int. 2015;2015:Article ID 964842.
De Craene B, Denecker G, Vermassen P, Taminau J, Mauch C, Derore A, Jonkers J, Fuchs E, Berx G. Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential. Cell Death Differ. 2014;21(2):310–320.
Yamakoshi K, Takahashi A, Hirota F, Nakayama R, Ishimaru N, Kubo Y, Mann DJ, Ohmura
M, Hirao A, Saya H, Arase S, Hayashi Y, Nakao K, Matsumoto M, Ohtani N, Hara E. Real-time in vivo imaging of p16 reveals cross talk with p53. J Cell Biol. 2009;186(3):393–407.
Zhang L, Li Z, Liu Y, Xu S, Tandon M, Appelboom B, LaValle CR, Chiosea SI, Wang L, Sen M, Lui VWY, Grandis JR, Wang QJ. Analysis of oncogenic activities of protein kinase D1 in head and neck squamous cell carcinoma. BMC Cancer
;18(1):1107.
Wang JN, Fan YP, Chen J, Feng Y, Cui BM, Li XY, Wang LW, Chen HL, Zhang P, Wu HK. [Role of protein kinase D1 in regulating the growth, apoptosis and drug sensitivity of oral squamous carcinoma cells]. Hua Xi Kou Qiang Yi Xue Za Zhi. 2019;37(6):583588.
Chen J, Cui B, Fan Y, Li X, Li Q, Du Y, Feng Y, Zhang P. Protein kinase D1 regulates hypoxic metabolism through HIF-1α and glycolytic enzymes incancer cells. Oncol Rep. 2018;40(2):1073-1082.
Borges S, Doppler H, Perez E, Andorfer C, Sun Z, Anastasiadis P, Thompson E, Geiger X, Storz P. Pharmacologic reversion of epigenetic silencing of the PRKD1 promoter blocks breast tumor cell invasion and metastasis. Breast Cancer Res. 2013;15(2):R66.
Jaggi M, Rao PS, Smith DJ, Hemstreet GP, Balaji KC. Protein kinase C mu is down-regulated in androgen-independent prostate cancer. Biochem Biophys Res Commun. 2003;307:254–260.
Bonifas JM, Pennypacker S, Chuang PT, McMahon AP, Williams M, Rosenthal A, De Sauvage FJ, Epstein EH Jr. Activation of expression of hedgehog target genes in basal cell carcinomas. J Investig Dermatol. 2001;116:739–742.
Martin-Liberal J, Cameron AJ, Claus J, Judson IR, Parker PJ, Linch M. Targeting protein kinase C in sarcoma. Biochim Biophys Acta 2014;1846:547–559.
Lee JH, Pyon JK, Kim DW, Lee SH, Nam HS, Kim CH, Kang SG, Lee YJ, Park MY, Jeong DJ, Cho MK. Elevated c-Src and c-Yes expression in malignant skin cancers. J Exp Clin Cancer Res. 2010;29(116):167.
Debski T, Lembas L, Jethon J. Basal cell carcinoma, current concepts in plastic surgery. Dissertation. Department of Plastic Surgery, The Medical Centre of Postgraduate Education in Warsaw, Poland 2012.
Montagner A, Delgado MB, Tallichet-Blanc C, Chan JS, Sng MK, Mottaz H, Degueurce G, Lippi Y, Moret C, Baruchet M, Antsiferova M, Werner S, Hohl D, Saati TA, Farmer PJ, Tan NS, Michalik L, Wahli W. Src is activated by the nuclear receptor peroxisome proliferator-activated receptor β/δ in ultraviolet radiation-induced skin cancer. EMBO Mol Med. 2014;6(1):80–98.
Kashiwagi M, Ohba M, Chida K, Kuroki T. Protein kinase Cη (PKClη): its involvement in keratinocyte differentiation. J Biochem. 2002;132:853–857.
Breitkreutz D, Braiman-Wiksman L, Daum N, Denning MF, Tennenbaum T. Protein kinase C family: on the crossroads of cell signaling in skin and tumor epithelium. J Cancer Res Clin Oncol.
;133(11):793–808.
Tu CL, Bikle DD. Role of the calciumsensing receptor in calcium regulation of epidermal differentiation and function. Best Pract Res Clin Endocrinol Metab. 2013;27(3):415–427.
Stelkovics E, Kiszner G, Meggyeshazi N, Korom I, Varga E, Nemeth I, Molnar J, Marczinovits I, Krenacs T. Selective in situ protein expression profiles correlate with distinct phenotypes of basal cell carcinoma and squamous cell carcinoma of the skin. Histol Histopathol. 2013;28(7):941–954.
Neill GW, Harrison WJ, Ikram MS, Williams TD, Bianchi LS, Nadendla SK, Green JL, Ghali L, Frischauf AM, O’Toole EA, Aberger F, Philpott MP. GLI1 repression of ERK activity correlates with colony formation and impaired migration in human epidermal keratinocytes. Carcinogenesis 2008;29(4):738–746.
Roy A, Veroli MV, Prasad S, Wang QJ. Protein Kinase D2 Modulates Cell Cycle By Stabilizing Aurora A Kinase at Centrosomes. Mol Cancer Res. 2018;16(11):1785-1797.
Du C, Zhang C, Li Z, Biswas U, Helal Md, Balaji KC. Beta-catenin phosphorylated at threonine 120 antagonizes generation of active beta-catenin by spatial localization in trans-Golgi network. PLoS One 2012;7(4):e33830.
Du C, Jaggi M, Zhang C, Balaji KC. Protein kinase D1-mediated phosphorylation and subcellular localization of β-catenin. Cancer Res. 2009;69: 1117–1124.
Wu H, Symes K, Seldin DC, Dominguez I. Threonine393 of β-catenin regulates interaction with axin. J Cell Biochem. 2009;108(1):52–63.
Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis 2008;25(6):593–600.
Rodgers UR, Kevorkian L, Surridge AK, Waters JG, Swingler TE, Culley K, Illman S, Lohi J, Parker AE, Clark IM. Expression and function of matrix metalloproteinase (MMP)-28. Matrix Biol. 2009;28(5):263–272.
Radisky ES, Radisky DC. Matrix metalloproteinaseinduced epithelial–mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 2010;15(2):201–212.
Eiseler T, Doppler H, Yan IK, Goodison S, Storz P. Protein kinase D1 regulates matrix metalloproteinase expression and inhibits breast cancer cell invasion. Breast Cancer Res. 2009;11(1):R13.
Hodges A, Smoller BR.
Immunohistochemical comparison of P16 expression in actinic keratoses and squamous cell carcinomas of the skin. Mod Pathol. 2002;15(11):1121–1125.
Hustinh SR, Fukushima N, Zahurak ML, Riall TS, Maitra A, Brosens L, Cameron JL, Yeo CJ, Offerhaus GJA, Hruban RH, Goggins M. Expression and prognostic significance of 14-3-3σ and ERM family protein expression in periampullary neoplasms. Cancer Biol Ther. 2005;4(5):596–601.
Hynes NE, Smirnova T. The 14-3-3σ tumor suppressor has multiple functions in ErbB2-induced breast cancer. Cancer Discov. 2012;2(1):19–22.
Ivanova PV, Dimov I. 1α,25(OH)2D3 and VDR in skin inflammation and cancer (additional remarks). Bulg Med. 2019;9(1):17–34.
Jacobs MS, Persons DL, Fraga GR. EGFR and MYC gene copy number aberrations are more common in squamous cell carcinoma than keratoacanthoma: a FISH study. J Cutan Pathol. 2013;40(5):447–454.
Shigeishi H, Sugiyama M, Tahara H, Ono Sh, Bhawal UK, Okura M, Kogo M, Shinohara M, Shindoh M, Shintani S, Hamakawa H, Takata T, Kamata N. Increased telomerase activity and hTERT expression in human salivary gland carcinomas. Oncol Lett 2011;2(5):845–850.
Rungsiyanont S, Swasdison S, Chang PL. Expression of c-myc, bcl-2 and survivin in cutaneous and oral squamous cell carcinoma, basal cell carcinoma and actinic keratosis. Tanzan Dent J. 2010;16(1):3–8.
Toll A, Salgado R, Yebenes M, MartinEzquerra G, Gilaberte M, Baro T, Sole F, Alameda F, Espinet B, Pujol RM. MYC gene numerical aberrations in actinic keratosis and cutaneous squamous cell carcinoma. Br J Dermatol. 2009;161(5):1112–1118.
Hessmann E, Schneider G, Ellenrieder V, Siveke JT. MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies. Oncogene 2016;35(13): 1609–1618
Hashiro M, Matsumoto K, Okumura H, Hashimoto K, Yoshikawa K. Growth inhibition of human keratinocytes by antisense c-Myc oligomer is not coupled to induction of differentiation Biochem Biophys Res Commun. 1991;174(1):287–292.
Spasojevic C, Marangoni E, Vacher S, Assayag F, Meseure D, Chateau-Joubert S, Humbert M, Karam M, Ricort JM, Auclair Ch, Regairaz M, Bieche I. PKD1 is a potential biomarker and therapeutic target in triple-negative breast cancer. Oncotarget 2018;9(33):23208–23219.
Weinreb I, Piscuoglio S, Martelotto LG, Waggott D, Ng CK, Perez-Ordonez B et al. Hotspot activating PRKD1 somatic mutations in polymorphous low-grade adenocarcinomas of the salivary glands. Nat Genet. 2014;46(11):1166–1169.
Liu Y, Li J, Ma Z, Zhang J, Wang Y, Yu Z,
Lin X, Xu Z, Su Q, An L, Zhou Y, Ma X, Yang Y,
Wang F, Chen Q, Zhang Y, Wang J, Zheng H, Shi A, Yu S, Zhang J, Zhao W, Chen L. Oncogenic functions of protein kinase D2 and D3 in regulating multiple cancer-related pathways in breast cancer. Cancer Med. 2019;8(2):729-741.
Liu Y, Wang Y, Yu S, Zhou Y, Ma X, Su Q, An L, Wang F, Shi A, Zhang J, Chen L. The Role and Mechanism of CRT0066101 as an Effective Drug for Treatment of Triple-Negative Breast Cancer. Cell Physiol Biochem. 2019;52(3):382-396.
Xu W, Qian J, Zeng F, Li S, Guo W, Chen L, Li G, Zhang Z, Wang QJ, Deng F. Protein kinase Ds promote tumor angiogenesis through mast cell recruitment and expression of angiogenic factors in prostate cancer microenvironment. J Exp Clin Cancer Res. 2019;38(1):114.
Oskarsson T, Essers MAG, Dubois N, Offner S, Dubey C, R Catherine Roger, Metzger D, Chambon P, Hummler E, Beard P, Trumpp A. Skin epidermis lacking the c-myc gene is resistant to ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21Cip1 gene. Genes Dev. 2006;20(15):2024–2029.
Pelengaris S, Littlewood T, Khan M, Elia G, Evan G. Reversible activation of c-Myc in skin. Mol Cell. 1999;3(5):565–577.
Schleger C, Verbeke C, Hildenbrand R, Zentgraf H, Bleyl U. c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod Pathol. 2002;15(4):462–469.
Doma E, Rupp C, Baccarini M. EGFR-RasRaf signaling in epidermal stem cells: roles in hair follicle development, regeneration, tissue remodeling and epidermal cancers. Int J Mol Sci.
;14(10):19361–19384.
Liggett WH Jr, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16(3):1197–1206.
Qing LY. Relationship of HIF-1α, PCNA and VEGF with microvascular density in cutaneous squamous cell carcinoma and basal cell carcinoma. China Papers 2010.
Queiroz AB, Focchi G, Dobo C, Gomes TS, Ribeiro DA, Oshima CT. Expression of p27, p21(WAF/Cip1), and p16(INK4a) in normal oral epithelium, oral squamous papilloma, and oral squamous cell carcinoma. Anticancer Res. 2010;30(7):2799–2803.
Ko S, Kim JY, Jeong J, Lee JE, Yang WI,
Jung WH. The role and regulatory mechanism of 14-33 sigma in human breast cancer. J Breast Cancer 2014;17(3):207–218.
Kozaki K, Imoto I, Pimkhaokham A, Hasegawa S, Tsuda H, Omura K, Inazawa J. PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma. Cancer Sci. 2006;97(12):1351–1358.
Cheng L, Pan CX, Zhang JT, Zhang S, Kinch MS, Li L, Baldridge LA, Wade C, Hu Z, Koch MO, Ulbright TM, Eble JN. Loss of 14-3-3sigma in prostate cancer and its precursors. Clin Cancer Res. 2004;10(9):3064–3068.
Urano T, Takahashi S, Suzuki T, Fujimura T, Fujita M, Kumagai J, Horie-Inoue K, Sasano H, Kitamura T, Ouchi Y, Inoue S, Urano T, Takahashi S,
Suzuki T, Fujimura T, Fujita M, Kumagai J, HorieInoue K, Sasano H, Kitamura T, Ouchi Y, Inoue S. 143-3σ is down-regulated in human prostate cancer.
Biochem Biophys Res Commun. 2004;319(3):795–
Guweidhi A, Kleeff J, Giese N, El Fitori J, Ketterer K, Giese T, Buchler MW, Korc M, Friess H. Enhanced expression of 14-3-3sigma in pancreatic cancer and its role in cell cycle regulation and apoptosis. Carcinogenesis 2004;25(9):1575–1585.
Neupane D, Korc M. 14-3-3sigma modulates pancreatic cancer cell survival and invasiveness. Clin Cancer Res. 2008;14(23):7614–7623.
Li Z, Dong Z, Myer D, Yip-Schneider M, Liu J, Cui P, Schmidt CM, Zhang JT. Role of 14-3-3σ in poor prognosis and in radiation and drug resistance of human pancreatic cancers. BMC Cancer 2010;10:598.
Bhawal UK, Sugiyama M, Nomura Y,
Kuniyasu H, Tsukinoki K. Loss of 14-3-3 sigma protein expression and presence of human papillomavirus type 16 E6 in oral squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2008;134(10):1055– 1059.
Gasco M, Bell AK, Heath V, Sullivan A, Smith P, Hiller L, Yulug I, Numico G, Merlano M, Farrell PJ, Tavassoli M, Gusterson B, Crook T. Epigenetic inactivation of 14-3-3 σ in oral carcinoma: association with p16INK4a silencing and human papillomavirus negativity. Cancer Res. 2002;62:2072– 2076.
Viet CT, Schmidt BL. Methylation array analysis of preoperative and postoperative saliva DNA in oral cancer patients. Cancer Epidemiol Biomark Prev. 2008;17(12):3603–3611.
Syrjanen S, Naud P, Sarian L, Derchain S, Roteli-Martins C, Longatto-Filho A, Tatti S, Branca M, Erzen M, Hammes LS, Costa S, Syrjanen K. Upregulation of 14-3-3sigma (Stratifin) is associated with high-grade CIN and high-risk human papillomavirus (HPV) at baseline but does not predict outcomes of HRHPV infections or incident CIN in the LAMS study. Am J Clin Pathol. 2010;133(2):232–240.
Uchida D, Begum NM, Almofti A, Kawamata H, Yoshida H, Sato M. Frequent downregulation of 14-3-3 sigma protein and hypermethylation of 14-3-3 sigma gene in salivary gland adenoid cystic carcinoma. Br J Cancer 2004;91(6):1131–1138.
Boukamp P. Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis 2005;26(10):1657–1667.
Choudhary V, Olala LO, Kaddour-Djebbar I, Helwa I, Bollag WB. Protein kinase D1 deficiency promotes differentiation in epidermal keratinocytes. J Dermatol Sci. 2014;76(3):186–195.
Fountzilas E, Kotoula V, Angouridakis N, Karasmanis I, Wirtz RM, Eleftheraki AG, Veltrup E, Markou K, Nikolaou A, Pectasides D, Fountzilas G. Identification and validation of a multigene predictor of recurrence in primary laryngeal cancer. PLoS One 2013;8(8):e70429.
Merzoug-Larabi M, Spasojevic C, Eymard M, Hugonin C, Auclair C, Karam M. Protein kinase C inhibitor Go6976 but not Go6983 induces the reversion of E- to N-cadherin switch and metastatic phenotype in melanoma: identification of the role of protein kinase D1. BMC Cancer 2017;17(1):12.
Liu DH, Zhao ZR, Lin YB, Zhou WJ, Hou JY, Ye ZH, Long H. Prognostic Effect of TP53 and PKD Co-Mutations in Patients with Resected Epidermal Growth Factor Receptor-Mutated Lung Adenocarcinoma. Ann Surg Oncol. 2019;26(6): 1934-1941.
Elbadawy M, Usui T, Yamawaki H, Sasaki
K. Emerging Roles of C-Myc in Cancer Stem CellRelated Signaling and Resistance to Cancer Chemotherapy: A Potential Therapeutic Target Against Colorectal Cancer. Int J Mol Sci. 2019;20(9):2340. 203. D’Costa AM, Robinson JK, Maududi T, Chaturvedi V, Nickoloff BJ, Denning MF. The proapoptotic tumor suppressor protein kinase C-δ is lost in human squamous cell carcinomas. Oncogene 2006;25:378–386.
Yadav V, Yanez NC, Fenton SE, Denning MF. Loss of protein kinase C δ gene expression in human squamous cell carcinomas. Am J Pathol. 2010;176(3):1091–1096.
Chew YC, Adhikary G, Wilson GM, Reece EA, Eckert RL. Protein kinase C (PKC) delta suppresses keratinocyte proliferation by increasing p21 (Cip1) level by a KLF4 transcription factor-dependent mechanism. J Biol Chem. 2011;286(33):28772–28782.
Chew YC, Adhikary G, Xu W, Wilson GM, Eckert RL. Protein kinase C δ increases Kruppel-like factor 4 protein, which drives involucrin gene transcription in differentiating keratinocytes. J Biol Chem. 2013;288(24):17759–17768.
Johansen C, Iversen L, Ryborg A, Kragballe K. 1α,25-Dihydroxyvitamin D3 induced differentiation of cultured human keratinocytes is accompanied by a PKC-independent regulation of AP-1 DNA binding activity. J Investig Dermatol. 2000;114(6):1174–1179.
Li Z, Guo J, Xie K, Zheng S.Vitamin D receptor signaling and pancreatic cancer cell EMT. Curr Pharm Des. 2015;21(10):1262–1267.
Teicher BA. Protein kinase C as a therapeutic target. Clin Cancer Res. 2006;12(18):5336–5345.
Li L, Sampat K, Hu N, Zakari J, Yuspa SH. Protein kinase C negatively regulates Akt activity and modifies UVC-induced apoptosis in mouse keratinocytes. J Biol Chem. 2006;281(6):3237–3243.
Peterburs P, Heering J, Link G, Pfizenmaier K, Olayioye MA, Hausser A. Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like. Cancer Res. 2009;69(14):5634–5638.
Jaggi M, Johansson SL, Baker JJ, Smith LM, Galich A, Balaji KC. Aberrant expression of Ecadherin and betacatenin in human prostate cancer. Urol Oncol Sem Orig Invest. 2005;23(6):402–406.
Jaggi M, Chauhan SC, Du C, Balaji KC. Bryostatin 1 modulates beta-catenin subcellular localization and transcription activity through protein kinase D1 activation. Mol Cancer Therap. 2008;7(9):2703–2712.
Mak P, Jaggi M, Syed V, Chauhan SC, Hassan S, Biswas H, Balaji KC. Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells. Biochem Biophys Res Commun. 2008;373(4):618–623.
Hassan S, Biswas MHU, Zhang C, Du C, Balaji KC. Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells. Oncogene 2009;28:4386–4396.
Biswas MHU, Du C, Zhang C, Straubhaar J, Languino LR, Balaji KC. Protein kinase D1 inhibits cell proliferation through matrix metalloproteinase-2 and matrix metalloproteinase-9 secretion in prostate cancer. Cancer Res. 2010;70(5):2095–2104.
Kim M, Jang HR, Kim JH, Noh SM, Song KS, Cho JS, Jeong HY, Norman JC, Caswell PT, Kang GH, Kim SY, Yoo HS, Kim YS. Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis 2007;29(3):629–637.
Jepperson T, Hughes J, Hausser A, Balaji K, Chauhan S, Jaggi M. Protein kinase D1 reduces cellular proliferation and invasiveness via suppression of betacatenin/T-cell factor activity in SW480 colon cancer cells [abstract 4256]. In: Proceedings of the 100th annual meeting of the American association for cancer research, Denver, CO. AACR, Philadelphia 2009.
Rodriguez Perez CE, Nie W, Sinnett-Smith J,
Rozengurt E, Yoo J. TNF-α potentiates lysophosphatidic acid-induced COX-2 expression via PKD in human colonic myofibroblasts. Am J PhysiolGastroint Liver Physiol. 2011;300(4):G637–G646.
Guha S, Rey O, Rozengurt E. Neurotensin induces protein kinase C-dependent protein kinase D activation and DNA synthesis in human pancreatic carcinoma cell line PANC-1. Cancer Res. 2002;62:1632–1640.
Guha S, Lunn JA, Santiskulvong C, Rozengurt E. Neurotensin stimulates protein kinase Cdependent mitogenic signaling in human pancreatic carcinoma cell line PANC-1. Cancer Res. 2003;63:2379–2387.
Yuan J, Rozengurt E. PKD, PKD2, and p38 MAPK mediate Hsp27 serine-82 phosphorylation induced by neurotensin in pancreatic cancer PANC-1 cells. J Cell Biochem. 2008;103(2):648–662.
Kisfalvi K, Hurd C, Guha S, Rozengurt E. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells. J Cell Physiol. 2010;223:309–316.
Trauzold A, Schmiedel S, Sipos B, Wermann H, Westphal S, Roder C, Klapper W, Alexander Arlt A, Lehnert L, Ungefroren H, Johannes FJ, Kalthoff H. PKCμ prevents CD95-mediated apoptosis and enhances proliferation in pancreatic tumour cells. Oncogene 2003;22(55):8939–8947.
Freinkel RK, Woodley DT. The Biology of the skin. The Parthenon Publishing Group, Boca Raton 2001.
Ming LM. Expression and significance of NF-κB/ p65, p-IκBα and IκKα in cutaneous SCC and BCC. Dissertation, Zhengzhou University 2007, http://www.disse rtati ontop ic.net/doc/11630 76.
Nitzki F, Becker M, Frommhold A, SchulzSchaeffer W, Hahn H. Patched knockout mouse models of basal cell carcinoma. J Skin Cancer
;2012:907543.
Papanikolaou S, Bravou V, Pazdrowski J, Dańczak-Pazdrowska A, Golusiński P, Szybiak B, Silny W, Golusiński W. The recurrence of facial basal cell carcinoma in patients treated at the head and neck surgery ward and laryngological oncology clinic of the greater Poland cancer centre in the years 2007–2010. Otolaryngol Pol. 2012;66(3):185–190.
Smith A, Teknos TN, Pan Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol. 2013;49(4):287–292.
Yavrouian EJ, Sinha UK. Recent advances in biomarkers and potential targeted therapies in head and neck squamous cell carcinoma. ISRN Surg Art 2012;ID 715743.
Rousseau A, Badoual C. Head and neck: squamous cell carcinoma: an overview. Atlas Genet Cytogenet Oncol Haematol. 2011; https
://doi.org/10.4267/2042/46948.
Borges S, Storz P. Protein kinase D isoforms: new targets for therapy in invasive breast cancers? Expert Rev Anticancer Ther 2013;13(8):895–898.
Kim DY, Park EY, Chang E, Kang HG, Koo Y, Lee EJ, Ko JY, Kong HK, Chun KH, Park JH. A novel miR-34a target, protein kinase D1, stimulates cancer stemness and drug resistance through GSK3/βcatenin signaling in breast cancer. Oncotarget. 2016; 7:14791–802. https://doi. org/10.18632/oncotarget.7443.
Zou Z, Zeng F, Xu W, Wang C, Ke Z, Wang QJ, Deng F. PKD2 and PKD3 promote prostate cancer cell invasion by modulating NF- B- and HDAC1mediated expression and activation of uPA. J Cell Sci. 2012;125(20):4800–4811.
Wille C, Kohler C, Armacki M, Jamali A, Gossele U, Pfizenmaier K, Seufferlein T, Eiseler T. Protein kinase D2 induces invasion of pancreatic cancer cells by regulating matrix metalloproteinases. Mol Biol Cell. 2013; https ://doi.org/10.1091/mbc.e1306-0334.
Ivanova PV, Maneva AI. Protein Kinase C profiles of normal human epidermal keratinocites, premalignant diseases and skin Head Neck Cancer. Bulf medicine 2019; accepted.
Torres-Marquez E, Sinnett-Smith J, Guha S, Kui R, Waldron RT, Rey O, and Rozengurt E. CID755673 enhances mitogenic signaling by phorbol esters, bombesin and EGF through a protein kinase Dindependent pathway. Biochem Biophys Res Commun. 2010;391(1):63–68.
Su Y, Wang P, Shen H, Sun Z, Xu C, Li G, Tong T, Chen J. The protein kinase D1-mediated classical protein secretory pathway regulates the Ras oncogene-induced senescence response. J Cell Sci. 2018;131(6): pii: jcs207217.
Chu E, Saini S, Liu T, Yoo J. Bradykinin stimulates protein kinase D-mediated colonic myofibroblast migration via cyclooxygenase-2 and heat shock protein 27. J Surg Res. 2017;209:191-198.
Qiu W, Steinberg SF. Phos-tag SDS-PAGE resolves agonist- and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol. 2016;99:14-22.
Aicart-Ramos C, Sánchez-Ruiloba L,
Gómez-Parrizas M, Zaragoza C, Iglesias T, RodríguezCrespo I. Protein kinase D activity controls endothelial nitric oxide synthesis. J Cell Sci. 2014;127(Pt 15):3360-72.
Christoforides C, Rainero E, Brown KK, Norman JC, Toker A. PKD controls αvβ3 integrin recycling and tumor cell invasive migration through its substrate Rabaptin-5. Dev Cell. 2012;23(3):560-72.
Ford JJ, Yeh LCC, Schmidgal
EC, Thompson JF, Adamo ML, Lee JC. Protein Kinase D1 Is Essential for Bone Acquisition During Pubertal Growth. Endocrinology. 2013; 154(11): 4182-91.
Leightner AC, Meyers CMG, Evans MD, Mansky KC, Gopalakrishnan R and Jensen ED. Regulation of Osteoclast Differentiation at Multiple Stages by Protein Kinase D Family Kinases. Int J Mol Sci. 2020; 21(3): 1056.
Mansky KC, Jensen ED, Davidova J, Yamamoto M, and Gopalakrishnan R. Protein Kinase D Promotes in Vitro Osteoclast Differentiation and Fusion. J Biol Chem. 2013; 288(14): 9826–9834.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.