COMPARATIVE ANALYSIS OF THE TYMOSHENKO METHOD AND THE Γ-METHOD FOR CALCULATION OF CLT PANELS STRENGTH BY BENDING.
DOI:
https://doi.org/10.31618/ESSA.2782-1994.2021.2.71.91Keywords:
bending strength, cross laminated timber, CLT, calculation method, shear deformation, Timoshenko beam theory, shear coefficient, shear stiffness, γ-method, advantages and disadvantages.Abstract
The γ-method and the Timoshenko method are most often used for calculation the bending strength of CLT panels, the latter of which takes into account the transverse shear deformations of the transverse layers of boards, which are due to the significant difference between the modulus of elasticity and the shear modulus apply the method of Timoshenko's beams. The γ-method treats the CLT panel as a beam on flexible joints, similar to the Derevyagin system beam on plate dowels or Kubler cubes, where the transverse layers of the boards are considered as flexible joints and are not taken into account when calculating the geometric characteristics of cross sections of CLT panels. Taking into account the amount of shear for each type of panels, depending on the configuration of the cross-sectional components, is performed by introducing shear correction factors, which in turn depend on the thickness of the CLT panel layers and their distance from the center of gravity of the panel. The γ-method, like Timoshenko's method, is used in engineering practice more often than the shear analogy method. Each technique has its advantages and disadvantages, as it has a number of specific assumptions to simplify the calculations. This paper highlights the advantages and disadvantages of the γ-method and the Timoshenko method, which are the most common and are contained in many technical opinions of various manufacturers of CLT panels.
References
Uibel, T.; Blass, H. J., “Edge joints with dowel type fasteners in cross laminated timber”, in: Proceedings, CIB-W18 Meeting 2007, Bled, Slovenia 2007, Paper 40-7-2.
B. Azinovic “Glued-in rods in CLT”. Short Term Scientific Mission (STSM) Report. COST Action FP1402: Basis of Structural Timber Design – from research to standards, 40 p., 2018.
Traetta, G. 2007. Connection Techniques for CLT elements. Paper presented at the Temtis Austrian Country Seminar: Cross-Laminated Timber, Graz, Austria.
Tlustochowicz G, Serrano E, Steiger R (2010) State-of-the-art review on timber connections with glued-in steel rods. Mater Struct 44(5):997–1020.
Bidakov A.N. Izmenenie prochnosti vkleenyh sterzhnej na vydergivanie v poperechnoj kleenoj drevesine (clt) v zavisimosti ot lokacii sterzhnya v poperechnom sechenii paneli. / Bidakov A.N., Raspopov E.A., Pustovojtova O.M., Strashko B.A. // Naukovij visnik budivnictva, – 2019. – № 4 – S. 202-208.
Fursov V.V. Pazlovye soedineniya fanernyh elementov stroitelnyh konstrukcij / V.V. Fursov, A.N. Bidakov // Naukovij visnik budivnictva, – 2014. – № 2 – S. 90-93.
DIN 1052:2008: Entwurf, Berechnung und Bemessung von Holzbauwerken – Allgemeine Bemessungsregeln und Bemessungsregeln fur den Hochbau, DIN, Berlin, 2008. (German) 8. EN338:2009 “Structural timber – Strength classes” European Committee for Standardization (CEN), 2009.
ETA 06/0009: Binder Brettsperrholz BBS – Mehrschichtige Holzbauelemente fur Wand-, Decken-, Dach und Sonderbauteile, Binder Holzbausysteme GmbH, Deutsches Institut fur Bautechnik, Berlin, Oktober 2006.
ETA 06/0138: Massive plattenformige Holzbauelemente fur tragende Bauteile in Bauwerken, KLH Massivholz GmbH, Osterreichisches Institut fur Bautechnik, Wien, Juli 2011.
EN1194:1999 Glued laminated timber – Strength classes and determination of characteristic values, (CEN), 1999.
Eierle, B.; Bos, B.: Schubverformungen von Stabtragwerken in der praktischen Anwendung, Bautechnik 90, Seiten 747 - 752. Berlin: Ernst & Sohn, 2013.
Eierle, B.; Bos, B.: Schubverformungen von Holztragwerken, Bauen mit Holz 90, Seiten 33 - 38. Koln: Bruderverlag, 2015.
MOOSBRUGGER, T.: Elastomechanik von Staben mit komplexem Querschnittsaufbau und verallgemeinerter Querschnittskinematik (Arbeitstitel). Technische Universitat Graz, Fakultat fur Bauingenieurwissenschaften, Dissertation (geplante Veroffentlichung 2012), Institut fur Stahlbau.
ONORM B 1995-1-1:2015 Eurocode 5: Bemessung und Konstruktion von Holzbauten – Teil 11: Allgemeines – Allgemeine Regeln fur den Hochbau, (German) Austria, 2015.
SCHELLING, W.: Die Berechnung nachgiebig verbundener zusammengesetzter Biegetrager im Ingenieurholzbau. Dissertation TH Karlsruhe, 1968.
SCHELLING, W.: Zur Berechnung nachgiebig zusammengesetzter Biegetrager aus beliebig vielen Einzelquerschnitten In: EHLBECK, J. (Hrsg.); STECK, G. (Hrsg.): Ingenieurholzbau in Forschung und Praxis. Bruderverlag Karlsruhe 1982.
SCHELLING, W.: Genauere Berechnung nachgiebig verbundener Holzbiegetrager mit dem gVerfahren In: Festschrift E. Csiesielski. WernerVerlag. S 10, April, 1998.
Mohler, K., «Strength and long-term behaviour of lumber and glued laminated timber under torsion loads», CIB-W18 / 7-6-1, Proceedings of the international council for research and innovation in building and construction, Working commission W18 – timber structures, Meeting 7, Stockholm, Sweden, 1977.
Mohler, K., «Stress perpendicular to grain», CIB-W18 / 11-6-2 , Proceedings of the international council for research and innovation in building and construction, Working commission W18 – timber structures, Meeting 11, Vienna, Austria, 1979.
MOHLER, K.: Uber das Tragverhalten von Biegetragern und Druckstaben mit zusammengesetzten Querschnitten und nachgiebigen Verbindungsmitteln. Habilitation TH Karlsruhe, 1962.
MOHLER, K.: Die Bemessung der Verbindungsmittel bei zusammengesetzten Biege- und Druckgliedern im Holzbau. Bauen mit Holz, 68. Jahrgang, S. 162-164, 1966.
Mohler, K.: Grundlagen der Holz- Hochbaukonstructionen, in Holzbau-Atlas, Institut fur intern. Architekturdokumentation, Munchen (1980).
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.