THE IMPORTANCE OF THROMBOELASTOMETRY IN THE HEMOSTATIC DISORDERS DIAGNOSIS IN INTENCIVE CARE PATIENTS WITH TRAUMAS (CLINICAL CASE)

Authors

  • O. Kostrova FSBEI "Chuvash State University n.a. I.N. Ulyanov"
  • I. Stomenskaya FSBEI "Chuvash State University n.a. I.N. Ulyanov"
  • N. Timofeeva FSBEI "Chuvash State University n.a. I.N. Ulyanov"
  • N. Buryachenko Budgetary Healthcare Institution “City Clinical Hospital №67 named after L.A. Vorokhobova Moscow Department of Health
  • I. Cherkasov CJSC “Firm Galen”
  • M. Dobrohotov Emergency Hospital of the Ministry of Health of Chuvash Republic
  • G. Struchko FSBEI "Chuvash State University n.a. I.N. Ulyanov"
  • A. Kazakov Emergency Hospital of the Ministry of Health of Chuvash Republic

DOI:

https://doi.org/10.31618/ESSA.2782-1994.2021.1.69.50

Keywords:

thrombelastometry; coagulogram; hemostasis; trauma; diagnosis

Abstract

thromboelastometry and coagulogram in patients with polytrauma.

Materials and methods. The results of thromboelastometry (TEM) and standard coagulogram of 12 patients aged 18 to 74 years with a diagnosis of trauma were analyzed. Analysis of thromboelastometry was performed using a ROTEM delta blood analyzer (Tem Innovations GmbH, Germany), which evaluates the physical properties of a clot. Patients' blood stabilized with sodium citrate was placed in special disposable microcuvettes with the addition of various activators of coagulation reactions. The following indicators of thromboelastometry were determined: CT, CFT, angle alpha (α), MCF, A5, A10 in the tests INTEM, EXTEM and FIBTEM. The determination of coagulogram parameters was carried out according to a standard method. The following parameters were identified: APTT, INR, fibrinogen A content, serum fibrin degradation products (SFDP) concentration.

Results. Coagulogram and thromboelastometry data at different stages of treatment were compared. In patients with the development of traumatic shock, coagulogram indices were changed to varying degrees depending on the stage of a shock. At the first stage of shock, the analysis showed only a 2-fold increase in SFDP and a slight increase in fibrinogen in dynamics. In a patient with a third stage of traumatic shock, the coagulogram indices were within normal limits, but according to TEM (EXTEM and FIBTEM tests), hypocoagulation was observed due to platelets. Only a coagulogram was evaluated in dynamics, hypocoagulation was observed in parameters of internal and external hemostasis pathways (prolongation of APTT, decrease in IPT and increase in INR), increase in fibrinogen A and SFDP. In the group of male patients with closed craniocerebral injuries, an increase in SFMC in the coagulogram had always been combined with changes in the FIBTEM test during TEM.

Conclusion. Thus, in most patients, there is no change in classic coagulogram tests immediately after the injury. At the same time, rotational thromboelastometry makes it possible to fill this deficiency at an earlier date, which indicates a high sensitivity of the method.

Author Biographies

O. Kostrova, FSBEI "Chuvash State University n.a. I.N. Ulyanov"

Candidate of Medical Sciences, Assistant Professor, Head of Department of the Instrumental Diagnostics with a Course of Phthisiology

I. Stomenskaya, FSBEI "Chuvash State University n.a. I.N. Ulyanov"

Candidate of Medical Sciences, Assistant Professor, Department of the Instrumental Diagnostics with a Course of Phthisiology

N. Timofeeva, FSBEI "Chuvash State University n.a. I.N. Ulyanov"

Assistant Lecturer, Department of Instrumental Diagnostics Department with a Course of Phthisiology

N. Buryachenko, Budgetary Healthcare Institution “City Clinical Hospital №67 named after L.A. Vorokhobova Moscow Department of Health

transfusiologist

I. Cherkasov, CJSC “Firm Galen”

product manager

M. Dobrohotov, Emergency Hospital of the Ministry of Health of Chuvash Republic

Head of the Department of Gravity Blood Surgery and Hyperbaric Oxygenation

G. Struchko, FSBEI "Chuvash State University n.a. I.N. Ulyanov"

Doctor of Medical Sciences, Professor, Head of Normal and Topographic Anatomy Department

A. Kazakov, Emergency Hospital of the Ministry of Health of Chuvash Republic

anesthetist-resuscitator

References

Ponomarenko E.A., Ignatova A.A., Fedorova D.V., Zharkov P.A., Panteleev M.A. Functional activity of platelets: physiology and laboratory diagnostic methods. Questions of hematology / oncology and immunopathology in pediatrics. 2019.Vol. 18. No. 3. P. 112-119 https://doi.org/10.24287/1726-1708-2019-18-3-112119

Shaydakov M.E., Blebea J. Thromboelastography (TEG). Treasure Island (FL): StatPearls Publishing; 2019, 20 p. PMID: 30725746

Baranich A.I., Sychev A.A., Savin I.A., Polupan A.A., Oshorov A.V., Potapov A.A. Hemostasis disorders in patients in the acute period of isolated traumatic brain injury (review). General reanimatology. 2018.V. 14. No. 5. P. 85-95. https://doi.org/10.15360/1813-9779-2018-5-85-95

Leonov N.P., Karaskov A.M., Litasova E.E., Strunin O.V., Karmadonova N.A., Akopov G.D., Vyshegorodtseva L.I. Comparative characteristics of kaolin-activated thromboelatography in healthy newborns and newborns with congenital heart defects. Clinical laboratory diagnostics. 2016. No2 (61). P. 87-90. https://doi.org/10.18821/OS69-2084-2016-61-2-87-90

Efremova O.V., Mamaev A.N., Elykomov V.A., Belozerov D.E. Bleeding and features of indicators of thromoboelastography in patients with chronic myelogenous leukemia. Preventive and clinical medicine. 2015. No. 4 (57). P. 82-86.

Stomenskaya I.S., Kostrova O.Yu., Struchko G.Yu., Timofeeva N.Yu. Thromboelastometry is a method of laboratory diagnosis of hemostatic system disorders. Medical almanac. 2017. No. 2 (47). P. 96-98.

Momot A.P., Taranenko I.A., Tsyvkina L.P. The state of thrombotic readiness is the possibility of modern diagnostics and prospects. Medical alphabet. 2013. No1. P. 20-23.

Roytman E.V. "The problem of hemostasis" in laboratory diagnostics. Laboratory of healthcare facility. 2016. No8. P. 29-36.

Koltsova E.M., Balandina A.N., Seregina E.A., Poletaev A.V., Vuymo T.A., Panteleev M.A., Ataullakhanov F.I. Aspects of the methodology of laboratory studies of hemostasis in pediatric hematology-oncology and general approaches in the pathology of hemostasis in leukemia. Russian Journal of Pediatric Hematology and Oncology. 2018;5(3):7488. (In Russ.) https://doi.org/10.17650/2311-1267-2018-5-3-74-88

Grinevich T.N. Rotem thromboelastometry as a new promising method for assessing the hemostatic system in trauma patients. Surgery News. 2010. No2. T.18. P. 115-122.

Jianning Zhang, Rongcai Jiang, Li Liu, Timothy Watkins, Fangyi Zhang, and Jing-fei Dong Traumatic Brain Injury-Associated Coagulopathy J Neurotrauma. 2012 Nov 20; 29(17): 2597–2605. doi: 10.1089/neu.2012.2348 PMID: 30187345

Caspers M., Schafer N., Frohlich M., Bauerfeind U., Bouillon B., Mutschler M., Maegele M. How do external factors contribute to the hypocoagulative state in trauma-induced coagulopathy? - In vitro analysis of the lethal triad in trauma. Scand J Trauma Resusc Emerg Med. 2018; 26 (1): 66: 2018. PMID:30111342.PMCID: PMC6094881. https://doi.org/10.1186/s13049-018-0536-8

Eduardo Gonzalez, Ernest E. Moore, Hunter B. Moore Management of Trauma Induced Coagulopathy with Thrombelastography Crit Care Clin. 2017 Jan; 33(1): 119–134. https://doi.org/10.1016/j.ccc.2016.09.002 PMID: 27894492

Baranich A.I., Sychev A.A., Savin I.A., Polupan A.A., Oshorov A.V., Potapov A.A. Coagulopathy in the Acute Phase of Traumatic Brain Injury. General Reanimatology. 2020;16(1):27-34. (In Russ.) https://doi.org/10.15360/1813-9779-2020-1-27-34

Herbert J.P., Guillotte A.R., Hammer R.D., Litofsky N.S. Coagulopathy in the Setting of Mild Traumatic Brain Injury: Truths and Consequences. Brain Sci; 2017: 7 (7). PMID:28737691.PMCID: PMC5532605. https://doi.org/10.3390/brainsci7070092

Published

2021-06-15

Issue

Section

Статьи