PROOF OF THE IMPOSSIBILITY OF THE PERFECT CUBOID EXISTENCE
DOI:
https://doi.org/10.31618/ESSA.2782-1994.2021.1.70.70Keywords:
Euler parallelepideds, perfect cuboid, spatial diagonal, cube doubling problem, irrationalityAbstract
The problem of finding, among the Euler parallelepipeds, one with an integer spatial diagonal, called the perfect cuboid problem, is one of the unsolved mathematical problems from the section of number theory. This article provides mathematical proof of the impossibility of the existence of the perfect cuboide among all possible Euler parallelepipeds. A mathematical justification for an equivalence of the problem of doubling a cube and the problem of constructing a perfect cuboid is also given.
References
Halcke P. Deliciae mathematicae oder mathematisches Sinnen-Confect // N. Sauer, Hamburg, Germany, 1719.
Saunderson N. Elements of algebra // Vol. 2, Cambridge Univ. Press, Cambridge, 1740.
Euler L. Vollstandige Anleitung zur Algebra // Kayserliche Akademie der Wissenschaften, St. Petersburg, 1771.
Pocklington H. C. Some Diophantine impossibilities // Proc. Cambridge Phil. Soc., Vol. 17, 1912, P. 108–121.
Kraitchik M. On certain rational cuboids // Scripta Math., Vol. 11, 1945, P. 317–326.
Sokolowsky B. D., VanHooft A. G., Volkert R. M., Reiter C. A. An infinite family of perfect parallelepipeds // Math. Comp. 83(2014), No. 289, P. 2441 – 2454.
Wyss W. On Perfect Cuboids // arxiv.org/abs/1506.02215v2 [math.NT] 27 Jun 2015.
Sawyer J. F., Reiter C. A. Perfect parallelopipeds exist // Math. Comp. 80(2011), No. 274, P. 1037 – 1040.
Sharipov R. A. Asimptoticheskij podhod k zadache o sovershennom kuboide // Ufimskij matematicheskij zhurnal. T. 7, N3 (2015), S. 100 – 113.
Wantzel P. L. Recherches sur les moyens de reconnaitre si un Probleme de Geometrie peut se resoudre avec la regle et le compas. Journal de Mathematiques Pures et Appliquees, 1837, Vol.1, Issue 2, PP. 366 – 372.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.