BIOELEMENTS: ROLE IN THE DEVELOPMENT OF DISEASES OF CIVILIZATION
DOI:
https://doi.org/10.31618/ESSA.2782-1994.2021.4.75.175Keywords:
Microelements, essential substances, neurodegenerative diseases, cancer, obesity, diabetes mellitusAbstract
The modern diseases of civilization include obesity, diabetes mellitus or insulin resistance, atherosclerosis, neurodegenerative and oncological diseases. Much more often, a modern person makes a choice in favor of tasty and high-calorie food, which is not standard in terms of the content of vitamins, amino acids, fatty acids and minerals. It is difficult to imagine that such a chronic deficiency of essential molecules could be beneficial for the evolution of humanity. Rather, on the contrary, we observe a number of metabolic changes, including those due to dysmicroelementosis, which undoubtedly lead to the development of various diseases of civilization. In this review, we presented the key functions of micronutrients and pathological conditions associated with their deficiency.
References
Skal'nyj A.V. Mikrojelementy: bodrost', zdorov'e, dolgoletie // . M.: Pero, 2018. 295 s. (Skalny A.V. [Trace elements: cheerfulness, health, longevity]. Moscow: Pero, 2018 [in Russ]).
Lysikov Ju.A. Rol' i fiziologicheskie osnovy obmena makro- i mikrojelementov v pitanii cheloveka. Jeksperimental'naja i klinicheskaja gastrojenterologija. 2009. (2), 120-131.
Savarino, G., Corsello, A. & Corsello, G. Macronutrient balance and micronutrient amounts through growth and development. Ital J Pediatr 47, 109 (2021). https://doi.org/10.1186/s13052-021-01061-0.
Skal'nyj A.V. Mikrojelementozy cheloveka (diagnostika i lechenie). Prakticheskoe rukovodstvo. M., 2001. 96 s. (Skalny A.V. [Human microelementoses (diagnostics and treatment)]. Moscow, 2001 [in Russ]).
Igamberdieva P.K. Issledovanie soderzhanija himicheskih jelementov v lekarstvennyh rastenijah Juzhnoj Fergany i perspektivy primenenija ih pri lechenii zabolevanij / P. K. Igamberdieva, E. A. Danilova, N. S. Osinskaja // Mikrojelementy v medicine. – 2016. – T. 17. – № 3. – S. 48-53. – DOI 10.19112/24136174-2016-17-3-48-53. (Igamberdieva P.K., Danilova E.A., Osinskaya N.S. [Study of chemical elements content in medical herbs from Southern Ferghana and possibilities of their usage in treatment of diseases]. Trace Elements in Medicine (Moscow). 2016, 3: 48-53 [in Russ]).
Penuelas J., Fernández-Martínez M., Ciais P., et. all. The bioelements, the elementome, and the biogeochemical niche. Ecology. 2019. Vol.100, Iss.5 e02652;1-15. DOI:10.1002/ecy.2652.
Trisvetova E.L. Magnij v klinicheskoj praktike. Racional'naja Farmakoterapija v Kardiologii. 2012;8(4):545-553. https://doi.org/10.20996/1819-6446-2012-8-4-258261/.
Fiorentini D, Cappadone C, Farruggia G, Prata C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients. 2021;13(4):1136. doi:10.3390/nu13041136
Dimke H., Hoenderop J.G., Bindels R.J. Molecular basis of epithelial Ca2+ and Mg2+ transport: Insights from the TRP channel family. J. Physiol. 2011;589:1535–1542.
Martens H, Leonhard-Marek S, Röntgen M, Stumpff F. Magnesium homeostasis in cattle: absorption and excretion. Nutr Res Rev. 2018 Jun;31(1):114-130. doi: 10.1017/S0954422417000257.
Tatarkova Z, de Baaij JHF, Grendar M, et al. Dietary Mg2+ Intake and the Na+/Mg2+ Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes. Int J Mol Sci. 2020;21(21):8221. Published 2020 Nov 3. doi:10.3390/ijms21218221.
Schuchardt JP, Hahn A. Intestinal Absorption and Factors Influencing Bioavailability of MagnesiumAn Update. Curr Nutr Food Sci. 2017;13(4):260-278. doi:10.2174/1573401313666170427162740.
Spencer H, Norris C, Williams D. Inhibitory effects of zinc on magnesium balance and magnesium absorption in man. J Am Coll Nutr 1994;13:479-84.
Ranade VV, Somberg JC. Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans. Am J Ther 2001;8:345-57.
Walker AF, Marakis G, Christie S, Byng M. Mg citrate found more bioavailable than other Mg preparations in a randomized, double-blind study. Mag Res 2003;16:183-91.
Kapilevich L.V., D'jakova E.Ju., Koshel'skaja E.V. Biohimija cheloveka: uchebnoe posobie dlja vuzov. - Ljubercy: Jurajt, 2016. - 151 c.
Baynes J.W., Dominiczak M.H. Medical Biochemistry 5th Edition. Elsevier Limited. 2018. 712 p.
Nelson D, Cox M, Hoskins A. Lehninger Principles Of Biochemistry. New York: W. H. Freeman & Company; 2021. 1248 p.
Murray R, Bender D, Botham K, Kennelly P, Rodwell V, Weil P. Harpers Illustrated Biochemistry 29Th Edition. Blacklick: McGraw-Hill Publishing; 2012. 818 p.
Gao G, Li J, Zhang Y, Chang YZ. Cellular Iron Metabolism and Regulation. Adv Exp Med Biol. 2019;1173:21-32. doi: 10.1007/978-981-13-9589-5_2.
Dev S, Babitt JL. Overview of iron metabolism in health and disease. Hemodial Int. 2017 Suppl 1(Suppl 1):S6-S20. doi: 10.1111/hdi.12542.
[Wang J. Regulation of cellular iron metabolism. / J. Wang , K. Pantopoulos // Biochem J. — 2011. — Vol. 434(3) — P. 365–381.].
[Balancing acts: molecular control of mammalian iron metabolism. Hentze MW, Muckenthaler MU, Andrews NC Cell. 2004 Apr 30; 117(3):285-97].
[Brune, M. 1986. Iron losses in sweat. Am. J. Clin. Nutr., 43: 438-443.].
[Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106(Suppl 6):1559S-1566S. doi:10.3945/ajcn.117.155804].
[Slavinskij I. A., Skorikova L. A. Zhelezosoderzhashhie fermenty nejtrofil'nyh lejkocitov u bol'nyh hronicheskim kataral'nym gingivitom v sochetanii s zhelezodeficitnoj anemiej // Kubanskij nauchnyj medicinskij vestnik. 2012. №4(133). 151-153.].
[Zhang Y, Murugesan P, Huang K, Cai H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol. 2020 Mar;17(3):170-194. doi: 10.1038/s41569-019-0260-8]
[Peng Ji, Eric B Nonnecke, Nicole Doan, Bo Lönnerdal, Bie Tan, Excess Iron Enhances Purine Catabolism Through Activation of Xanthine Oxidase and Impairs Myelination in the Hippocampus of Nursing Piglets, The Journal of Nutrition, Volume 149, Issue 11, November 2019, Pages 1911–1919, doi:10.1093/jn/nxz166].
[WHO. Worldwide prevalence of anaemia 1993–2005. In: Bruno de Benoist EM, Egli Ines, Cogswell Mary, editors. WHO Global Database on Anaemia. Geneva, Switzerland: WHO; 2008.].
[Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106(Suppl 6):1559S-1566S. doi:10.3945/ajcn.117.155804].
Choi S, Hong DK, Choi BY, Suh SW. Zinc in the Brain: Friend or Foe?. Int J Mol Sci. 2020;21(23):8941. doi:10.3390/ijms21238941.
Kondaiah P, Yaduvanshi PS, Sharp PA, Pullakhandam R. Iron and Zinc Homeostasis and Interactions: Does Enteric Zinc Excretion Cross-Talk with Intestinal Iron Absorption?. Nutrients. 2019;11(8):1885. Published 2019 Aug 13. doi:10.3390/nu11081885.
Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem. 2021;296:100320. doi:10.1016/j.jbc.2021.100320.
Michalczyk K, Cymbaluk-Płoska A. The Role of Zinc and Copper in Gynecological Malignancies. Nutrients. 2020;12(12):3732. Published 2020 Dec 3. doi:10.3390/nu12123732.
[Cassandri, M., Smirnov, A., Novelli, F. et al. Zinc-finger proteins in health and disease. Cell Death Discov. 3, 17071 (2017). https://doi.org/10.1038/cddiscovery.2017.71].
Horrobin DF, Cunnane SC. Interactions between zinc, essential fatty acids and prostaglandins: relevance to acrodermatitis enteropathica, total parenteral nutrition, the glucagonoma syndrome, diabetes, anorexia nervosa and sickle cell anaemia. Med Hypotheses. 1980 Mar;6(3):277-96. doi: 10.1016/0306-9877(80)90125-5.
Black RE. Therapeutic and preventive effects of zinc on serious childhood infectious diseases in developing countries. Am J Clin Nutr 1998;68:47 6S-9S.
Li L, Yang X. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. Oxid Med Cell Longev.
;2018:7580707. doi:10.1155/2018/7580707
Ye Q, Park JE, Gugnani K, Betharia S, PinoFigueroa A, Kim J. Influence of iron metabolism on manganese transport and toxicity. Metallomics. 2017 Aug 16;9(8):1028-1046. doi: 10.1039/c7mt00079k.
K. Girijashanker, L. He, M. Soleimani, J. M. Reed, H. Li, Z. Liu, B. Wang, T. P. Dalton and D. W. Nebert, Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter, Mol. Pharmacol., 2008, 73, 1413–1423.
Aschner JL, Aschner M. Nutritional aspects of manganese homeostasis. Mol Aspects Med 2005;26:353-62.
K. J. Horning, S. W. Caito, K. G. Tipps, A. B. Bowman and M. Aschner, Manganese Is Essential for Neuronal Health, Annu. Rev. Nutr., 2015, 35, 71–108.
Reeves P. G., DeMars L. C. Copper deficiency reduces iron absorption and biological half-life in male rats. J. Nutr. 2004; 134 (8): 1953—1957.
Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci. 2020;21(23):9259. doi:10.3390/ijms21239259.
Sunde RA. Selenium. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR, eds. Modern Nutrition in Health and Disease. 11th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012:225-37.
Zhang J., Saad R., Taylor E.W., Rayman M.P. Selenium and selenoproteins in viral infection with potential relevance to COVID-19. Redox Biol. 2020; 37: 101715. doi: 10.1016/j.redox.2020.101715
Hossain A, Skalicky M, Brestic M, et al. Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules. 2021;26(4):881. doi:10.3390/molecules26040881.
U.S. Department of Agriculture, Agricultural Research Service. FoodData Central, 2019.
Bügel S, Larsen EH, Sloth JJ, et al. Absorption, excretion, and retention of selenium from a high selenium yeast in men with a high intake of selenium. Food Nutr Res. 2008;52:10.3402/fnr.v52i0.1642. doi:10.3402/fnr.v52i0.1642.
Polonskaja Ja.V., Kashtanova E.V. Rol' mikro- i makrojelementov v razvitii ateroskleroticheskoj bljashki. Rossijskij kardiologicheskij zhurnal. 2019;(5):90-94. doi.org/10.15829/1560-4071-2019-5-90-94.
Cascino TM, Hummel SL. Nutrient Deficiencies in Heart Failure: A Micro Problem With Macro Effects? J Am Heart Assoc. 2018;7(17):e010447. doi: 10.1161/JAHA.118.010447.
Tone C. Supplement Spotlight: Magnesium Intake. Today's Dietitian. 2016. Vol. 18, No. 12, P. 18.
Jensen SK, Yates B, Lyden E, Krogstrand KS, Hanson C. Dietary Micronutrient Intake of Participants in a "Partners Together in Health" Cardiac Rehabilitation Intervention. J Cardiopulm Rehabil Prev. 2018;38(6):388-393. doi:10.1097/HCR.0000000000000331.
Gaulden JK, Appel SJ, Kilcawley V (2018) Micronutrients in Congestive Heart Failure: An Integrative Review. Int Arch Nurs Health Care 4:095. doi.org/10.23937/2469-5823/1510095.
Sciatti E, Lombardi C, Ravera A, et al. Nutritional Deficiency in Patients with Heart Failure. Nutrients. 2016;8(7):442. Published 2016 Jul 22. doi:10.3390/nu8070442
Akbari G. Role of Zinc Supplementation on Ischemia/Reperfusion Injury in Various Organs. Biol Trace Elem Res 196, 1–9 (2020). https://doi.org/10.1007/s12011-019-01892-3.
Houston M. The role of noninvasive cardiovascular testing, applied clinical nutrition and nutritional supplements in the prevention and treatment of coronary heart disease. Ther Adv Cardiovasc Dis. 2018;12(3):85-108. doi:10.1177/1753944717743920.
Liu H, Xu H, Huang K. Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics. 2017;9 (1):21-37.doi:10.1039/c6mt00195e.
Antonino Catalano, Federica Bellone, Diego Chilà, Saverio Loddo, Nunziata Morabito, Giorgio Basile, Salvatore Benvenga, Francesco Corica. Rates of hypomagnesemia and hypermagnesemia in medical settings. Magnesium Research. 2021;34(1):1-8. doi:10.1684/mrh.2021.0478
Hitesh Verma, Rajeev Garg. Evaluation of synergistic combination comprising magnesium orotate, menaquinone-7, and cholecalciferol for management of type 2 diabetes and dyslipidemia. Magnesium Research. 2020;33(4):88-105. doi:10.1684/mrh.2020.0472.
Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459-1544. GBD 2015 Mortality, Causes of Death Collaborators.
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7-30.
Gopal Kumar, Prodyot K. Chatterjee, Swati Madankumar, Syed F. Mehdi, Xiangying Xue, Christine N. Metz. Magnesium deficiency with high calcium-to-magnesium ratio promotes a metastatic phenotype in the CT26 colon cancer cell line. Magnesium Research. 2020;33(3):68-85. doi:10.1684/mrh.2020.0470
Bailey R.L., Dodd K.W., Goldman J.A. Estimation of total usual calcium and vitamin D intakes in the United States. J Nutr. 2010;140:817-822.
Choi D.G., Venkatesan J., Shim M.S. Selective Anticancer Therapy Using Pro-Oxidant Drug-Loaded Chitosan-Fucoidan Nanoparticles. Int J Mol Sci. 2019;20(13):3220. Doi:10.3390/ijms20133220.
[Kolieva D.O., Neelova O.V. Biologicheskaja rol' zheleza i ego obnaruzhenie v farmacevticheskih preparatah // Uspehi sovremennogo estestvoznanija. – 2011. – № 11. – S. 100-100].
Ji J, Zhou Y, Hao S, et al. Low expression of ferroxidases is implicated in the iron retention in human atherosclerotic plaques Biochemical and biophysical research communications. 2015;464 (4):1134-8. doi:10.1016/j.bbrc.2015.07.091.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.