GENETIC POLYMORPHISMS AND PHYSICAL ACTIVITY TO OPTIMIZE WEIGHT MAINTENANCE EFFORTS AND PREVENT CARDIOVASCULAR RISK FACTORS

Authors

  • I. Komir Government Institution „L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”

DOI:

https://doi.org/10.31618/ESSA.2782-1994.2021.2.76.204

Keywords:

genes, physical activity, cardiovascular risk factors

Abstract

The development of cardiovascular diseases is due to the interaction of genes with environmental factors. The individual body's response to diet therapy and lifestyle modification also largely depends on genetic factors, in particular the presence of polymorphic variants of the ADRB2 (Gln27Glu), ADRB2 (Agr16Gly), ADRB3 (Trp64Agr), PPARG2 (Pro12Ala) and FABP genes. Despite recommendations for lifestyle modifications, it is especially important for patients with cardiovascular disease to achieve weight loss and maintenance. However, there are no studies comparing the effects of drug therapy and lifestyle modification.

Author Biography

I. Komir, Government Institution „L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”

PhD, Senior Research Associate of the Department  of Chronic Non-communicable Disease Prevention

References

Borodina SV, Gapparova KM, Zajnudinov ZM, Grigor'jan ON. Geneticheskie prediktory razvitija ozhirenija. Ozhirenie i metabolizm. 2016;13(2):7-13. https://doi.org/10.14341/omet201627-13B-22.

Li Y, Yuan H, Sun L, Zhou Q, Yang F, Yang Z, Liu D.β2-Adrenergic Receptor Gene Polymorphisms are assotiated with Cardiovascular Events But not All-Cause Mortality in Coronary Artery DiseasePatients: A Meta-Analysis of Prospective Studies.Test Mol Biomarkers. 2019;23(2):124-137. doi: 10.1089/gtmb.2018.0153.

Cibičková Ľ, Langová K, Vaverková H, Kubíčková V, Karásek D. Correlation of uric acid levels and parameters of metabolic syndrome. Physiol Res. 2017;66(3):481-487. doi: 10.33549/physiolres.933410.

Іsaєva GS, RєznіkLA, Vovchenko MM, Burjakovs'ka OO, Emel'janovaNJu. Vpliv grupovogo ta іndivіdual'nogo navchannja pacієntіv na efektivnіst' kontrolju faktorіv sercevosudinnogo riziku. Ukraїns'kij kardіologіchnij zhurnal. 2019;26(1):61-71. doi:10.31928/1608-635X2019.1.6171.

Kotseva K, De Backer G, De Bacquer D, Rydén L, Hoes A, Grobbee D, etal. Primary prevention efforts are poorly developed in people at high cardiovascular risk: A report from the European Society of Cardiology EURObservational Research Programme EUROASPIRE V survey in 16 European countries. EUROASPIRE V Investigators. Eur J Prev Cardiol.2021;28(4):370-9. doi: 10.1177/2047487320908698.

Neel JV. Diabetes Mellitus: a «thrifty» Genotype RenderedDetrimental by «progress»? Am. J. Hum. Genet. 1962; 14 (4):353-62.

Lima RPA, Ribeiro MR, de Farias Lima KQ, Sena EA, de Oliveira CD, Luna RCP, et al. Methylation profile of the ADRB3 gene and its association with lipid profile and nutritional status in adults.Biol Res. 2019;52(1):21. doi: 10.1186/s40659-019-0226-7.

Ryuk JA, Zhang X, Ko BS, Daily JW, Park S. Association of β3-adrenergic receptor rs4994 polymorphisms with the risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2017;129:86-96. doi: 10.1016/j.diabres.2017.03.034.

Gerber PA, Nikolic D, Rizzo M. Small, dense LDL: an update. Curr Opin Cardiol. 2017;32(4):454459. doi: 10.1097/HCO.0000000000000410.

Walston J, Silver K, Bogardus C, Knowler WC, Celi FS, Austin S, et al. Time of onset of noninsulin-dependent diabetes mellitus and genetic variation in the beta 3-adrenergic-receptor gene. N Engl J Med. 1995;333:343–347.

Clément K, Vaisse C, Manning BS, Basdevant A, Guy-Grand B, Ruiz J, et al. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med. 1995;333:352–354.

Hameed EK. TyG index a promising biomarker for glycemic control in type 2 diabetes mellitus. Diabetes Metab. Syndr. 2019; 13(1):560563.doi: 10.1038 / oby.2004.97.

Widén E, Lehto M, Kanninen T, Walston J, Shuldiner AR, Groop LC. Association of a polymorphism in the beta 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med. 1995;333:348–351.

Phares DA, Halverstadt AA, Shuldiner AR, Ferrell RE, Douglass LW, Ryan AS,et al. Association between body fat response to exercise training and multilocus ADR genotypes. Obes Res.2004; 12(5):807-15.

Shiwaku K, Nogi A, Anuurad E, Kitajima K, Enkhmaa B, Shimono K, Yamane Y. Difficulty in losing weight by behavioral intervention for women with Trp64Arg polymorphism of the beta3-adrenergic receptor gene. Int J Obes Relat Metab Disord. 27(9):1028-36. doi: 10.1038/sj.ijo.0802375.

Sakane N, Sato J, Tsushita K, Tsujii S, Kotani K, Tominaga M, et al.; Japan Diabetes Prevention Program (JDPP) Research Group. Effects of lifestyle intervention on weight and metabolic parameters in patients with impaired glucose tolerance related to beta-3 adrenergic receptor gene polymorphism Trp64Arg(C/T): Results from the Japan Diabetes Prevention Program. J Diabetes Investig. 2016;7(3):338-42. doi: 10.1111/jdi.12426.

Chen Y, Liao Y, Sun S, Lin F, Li R, Lan S, et al. Stratified meta-analysis by ethnicity revealed that ADRB3 Trp64Arg polymorphism was associated with coronary artery disease in Asians, but not in Caucasians. Medicine (Baltimore) 2020;99:e18914

Daghestani M, Daghestani M, Daghistani M, Eldali A, Hassan ZK, Elamin MH, Warsy A. ADRB3 polymorphism rs4994 (Trp64Arg) associates significantly with bodyweight elevation and dyslipidaemias in Saudis but not rs1801253 (Arg389Gly) polymorphism in ARDB1. Lipids Health Dis. 2018;17(1):58. doi: 10.1186/s12944-018-0679-7.

Coletta A,Kreider R. Genetic Profiling for Weight Loss: Potential Candidate Genes.Bioenergetics. 2015;4:2.doi: 10.4172/21677662.1000126.

Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Goni L, Cuervo M, Martinez JA. Differential lipid metabolism outcomes associated with ADRB2 gene polymorphisms in response to two dietary interventions in overweight/obese subjects. Nutr Metab Cardiovasc Dis. 2018;28(2):165-72. doi: 10.1016/j.numecd.2017.11.006.

Zhang H, Wu J, Yu L. Association of Gln27Glu and Arg16Gly polymorphisms in Beta2adrenergic receptor gene with obesity susceptibility: a meta-analysis. PLoS One. 2014;9(6):e100489. doi: 10.1371/journal.pone.0100489.

Ellsworth DL, Coady SA, Chen W, Srinivasan SR, Elkasabany A, Gustat J, et al. Influence of the beta2-adrenergic receptor Arg16Gly polymorphism on longitudinal changes in obesity from child hood through young adulthood in a biracial cohort: the Bogalusa Heart Study. Int J Obes Relat Metab Disord. 2002;26(7): 928-37. doi: 10.1038/sj.ijo.0802020.

Prior SJ, Goldberg AP, Ryan AS. ADRB2 haplotype is associated with glucose tolerance and insulin sensitivity in obese postmenopausal women. Obesity (Silver Spring). 2011;19(2):396-401. doi: 10.1038/oby.2010.197.

Albala C, Santos JL, Cifuentes M, Villarroel AC, Lera L, Liberman C, et al. Intestinal FABP2 A54T polymorphism: association with insulin resistance and obesity in women. Obes Res. 2004;12(2):340-5.doi: 10.1038/oby.2004.42.

Pratley RE, Baier L, Pan DA, Salbe AD, Storlien L, Ravussin E, Bogardus C. Effects of an Ala54Thr polymor-phism in the intestinal fatty acidbinding protein on responses to dietary fat in humans. J Lipid Res. 2000;41(12):2002-8.

Drabsch T, Holzapfel C. A Scientific Perspective of Personalised Gene-Based Dietary Recommendations for Weight Management. Nutrients. 2019;11(3):617. doi: 10.3390/nu11030617.

Raza ST, Abbas S, Siddiqi Z, Mahdi F. Association between ACE (rs4646994), FABP2 (rs1799883), MTHFR (rs1801133), FTO (rs9939609) Genes Polymorphism and Type 2 Diabetes with Dyslipidemia. Int J Mol Cell Med. 2017;6(2):121-30. doi: 10.22088/acadpub.BUMS.6.2.6.

Kyung, HyunSik Kang. Effect of a 12-week dancesport program on obesity and insulin resistance across the FABP2 genotype. Sports Science. 2006;16(2):103–14.

Luis DA, Aller R, Izaola O, Sagrado MG, Conde R. Influence of ALA54THR polymorphism of fatty acid binding protein 2 on lifestyle modification response in obese subjects. Annuals Nutritiona and Metabilism. 2006;50(4):354–60.

Nishida Y, Iyadomi M, Tominaga H, Taniguchi H, Higaki Y, Tanaka H, et al. Influence of Single-Nucleotide Polymorphisms in PPAR-δ, PPARγ, and PRKAA2 on the Changes in Anthropometric Indices and Blood Measurements through ExerciseCentered Lifestyle Intervention in Japanese MiddleAged Men. Int J Mol Sci. 2018;19(3):703. doi: 10.3390/ijms19030703.

Al-Naemi AH, Ahmad AJ. Is the rs1801282 (G/C) Polymorphism of PPAR - Gamma Gene Associated with T2DM in Iraqi People? Open Access Maced J Med Sci. 2018 Mar 14;6(3):447-55. doi: 10.3889/oamjms.2018.156.

Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N, Ruscica M. PPAR Agonists and Metabolic Syndrome: An Established Role? Int J Mol Sci. 2018;19(4):1197. doi: 10.3390/ijms19041197.

Yates T, Davies MJ, Henson J, Edwardson C, Webb D, Bodicoat DH, et al. Effect of the PPARG2 Pro12Ala Polymorphism on Associations of Physical Activity and Sedentary Time with Markers of Insulin Sensitivity in Those with an Elevated Risk of Type 2 Diabetes. PLoS ONE.2015;10(5): e0124062. doi:10.1371/journal.pone.0124062.

Cartwright T, Mason H, Porter A, Pilkington K. Yoga practice in the UK: a cross-sectional survey of motivation, health benefits and behaviors. BMJ Open

[serial on the Internet]. 2020; 10(1): e031848. Available from:

https://bmjopen.bmj.com/content/10/1/e031848

Chauhan A, Semwal DK, Mishra SP, Semwal RB. Yoga Practice Improves the Body Mass Index and Blood Pressure: A Randomized Controlled Trial. Int J

Yoga. 2017;10 (2):103-6. doi: 10.4103/ijoy.IJOY_46_16.

Yadav R, Yadav RK, Sarvottam K, Netam R. Framingham Risk Score and Estimated 10-Year Cardiovascular Disease Risk Reduction by a ShortTerm Yoga-Based Life Style Intervention. J Altern Complement Med. 2017; 23(9):730-7.

Cramer H. The Efficacy and Safety of Yoga in Managing Hypertension. Exp Clin Endocrinol Diabetes. 2016;124(2): 65-70.

Wolff M, Rogers K, Erdal B, Chalmers JP, Sundquist K, Midlöv P. Impact of a short home-based yoga programme on blood pressure in patients with hypertension: a randomized controlled trial in primary care. J Hum Hypertens. 2016; 30: 599–605.

Liu Y, Lee DC, Li Y, Zhu W, Zhang R, Sui X, et al. Associations of Resistance Exercise with Cardiovascular Disease Morbidity and Mortality. Med Sci Sports Exerc. 2019; 51(3):499-508.

MacDonald HV, Johnson BT, Huedo-Medina TB, Livingston J, Forsyth KC, Kraemer WJ, et al. Dynamic Resistance Training as Stand-Alone Antihypertensive Lifestyle Therapy: A Meta-Analysis. J Am Heart Assoc. 2016; 5(10):e003231. doi: 10.1161/JAHA.116.003231.

Schroeder EC, Franke WD, Sharp RL, Lee DC. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS One. 2019;14(1):e0210292. doi: 10.1371/journal.pone.0210292.

Published

2022-01-27

Issue

Section

Статьи