LASER DETECTOR OF ACOUSTIC OSCILLATIONS UTILIZING A RETROREFLECTIVE SURFACE WITH GLASS BEADS
Keywords:
lasers, acoustics, detectors, retroreflective surfaces, micro glass beads, simulation, specklometryAbstract
A method for detecting acoustic oscillations of a medium using laser radiation and reflective surfaces based on micro glass beads is considered. A mathematical model that describes all stages of the detection process has been created. A computer simulation model has been developed, which makes it possible to study the detection system providing ability to vary a wide range of parameters. The model was verified by comparing the simulation results with those observed during a physical experiment. Some simulation results are presented. The prospects of using the developed model are outlined.
References
MeasuresR.M. Laser Remote Sensing: Fundamentals and Applications.Malabar,FL :Krieger Publishing, 1992.
Tetsuo Fukuchi,Tatsuo Shiina. Industrial Applications of Laser Remote Sensing. Bentham Science Publishers, 2012.
Korpel, A. Acousto-Optics, Second Edition; Technology & Engineering, CRC Press, 1996.
Magdich, L.N. Acoustooptic Devices and Their Applications; Technology & Engineering, CRC Press, 1989.
Sirohi, R.S., Ed. Speckle Metrology; Technology & Engineering, CRC Press, 1993.
M. Kowalczyk, Pluta M. , Jabczynski J. K., and Szyjer M. Laser speckle velocimetry // Optical Velocimetry, Proc. SPIE 2729, 1996. Pp. 139–145.
Raffel M., Willert C., Kompenhans J. Particle Image Velocimetry. A Practical Guide. Springer, 1998.
Dolya G. M., Lytvynova O. S. Modeling of fluctuations of laser radiation scattered on the reflector array in a turbulent atmosphere // Laser and Fiber-Optical Networks Modeling (LFNM), 2011. Pp. 108-111.
Tietze S., Lindner G. Visualization of the interaction of guided acoustic waves with water by light refractive vibrometry. // Ultrasonics, Issue 99, 105955, 2019.
Dolya G.N., Litvinova E. S. Retroreflective laser detector of acoustic oscillations // Proceedings of 12th International Conference on Laser & Fiber-Optical Networks Modeling (LFNM’2016),Sept. 15-18, Odessa, Ukraine. Pp. 108-111.
Lloyd J. A brief history of retroreflective sign face sheet materials. The principles of retroreflection. REMA publications, 2008.
Migletz J., Fish J. K., Grahm J. L. Roadway Delineation Practices Handbook. US Department of transportation, Federal highway administration, 1994.
HériczD., Sarkadi T., Erdei G., Lazuech T., Lenk S., Koppa P. Simulation of small-and wide-angle scattering properties of glass-bead retroreflectors // Applied Optics Vol. 56, Issue 14, 2017. Pp. 3969-3976.
A.J. Giarola, T.R.Billeter, Electroacoustic deflection of a coherent light beam, Proc.IEEE 51, #8, 1150 (1963).
R. Lipnik, A. Reich, G.A. Schoen, Nonmechanical scanning of light using acoustic waves, Proc. JEEE52, #7, 853 (1964).
Dolya G., Bondarenko K. Model of laser radiation transformation upon retroreflection from glass beads based surface // East European Scientific Journal, #5 (45), 2019. Pp. 10-20.
Kogelnik H., Li T.Laser Beams and Resonators// OSA Publishing: Applied optics, Vol. 5. No.10, 1966. Pp. 1550-1567. 18.Marcuse D. Light transmission optics. –Van Nostrand Reinhold, 1972.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.